Computational analysis of Ramsey-type theorems

William Gaudelier Under the supervision of Julien Cervelle and Ludovic Levy Patey

LACL - william.gaudelier@u-pec.fr

18 October 2024

UNIVERSITÉ PARIS-EST CRÉTEIL VAL DE MARNE

Table of contents

Table of Contents

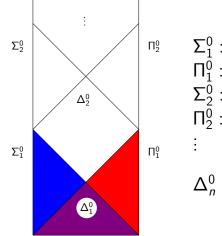
- 2 Ramsey's Theorem
- 3 CAC for trees
- 4 Ramsey Products

Ramsey's Theorer

CAC for trees

Ramsey Products 000000000 Conclusion

The arithmetic hierarchy



$$\Sigma_1^0$$
: { $x : \exists y, (x, y) \in R$ }
 Π_1^0 : { $x : \forall y, (x, y) \in R$ }
 Σ_2^0 : { $x : \exists y, \forall z, (x, y, z) \in R$ }
 Π_2^0 : { $x : \forall y, \exists z, (x, y, z) \in R$ }
:

$$\Delta_n^0 := \Sigma_n^0 \cap \Pi_n^0$$

4/48

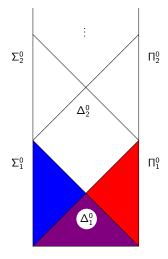
Ramsey's Theorem

CAC for trees

Ramsey Products

Conclusion

The arithmetic hierarchy



Theorem (Post)

Let $A \subseteq \mathbb{N}$ and $n \in \mathbb{N}$

$$\begin{array}{rl} \mathsf{A} \text{ is } \emptyset^{(n)} \text{-computable } \iff \mathsf{A} \text{ is } \Delta^0_{n+1} \\ \\ \mathsf{A} \text{ is } \emptyset^{(n)} \text{-c.e. } \iff \mathsf{A} \text{ is } \Sigma^0_{n+1} \end{array}$$

 $\Delta_1^0\equiv ext{computable}\ \Sigma_1^0\equiv ext{computably enumerable}\ \Delta_2^0\equiv \emptyset' ext{-computable}$

What are reverse mathematics ?

A branch of logic created in 1974 by Harvey Friedman Goals:

- Find the simplest axioms required to prove a given theorem (hence the name)
- Provide an adequate framework to investigate the computational content of theorems
- Search for new proofs

The framework of reverse mathematics

- Second order arithmetic, with structures of the form $\langle N, S \rangle$
- An ω-model is of the form (ω, S) where ω is the set of standard integers
- We must be able to encode the objects we are working with, for example continuous functions from $\mathbb R$ to $\mathbb R$
- Subsystems above a base theory called RCA₀

Comprehend RCA₀

- Corresponds to computable mathematics
- Its typical model is $\langle \omega, {\rm COMP} \rangle$ where ${\rm COMP}$ is the class of computable sets
- We now have a more faithful definition of the implication between two theorems $RCA_0 \vdash P \Rightarrow Q$.

RCA₀ Recursive Comprehension Axiom

- Robinson's arithmetic
- Comprehension scheme for Δ_1^0 formula

$$(\forall x, (\varphi(x) \Leftrightarrow \psi(x))) \Rightarrow \exists X, \forall y, (y \in X \Leftrightarrow \varphi(y))$$

• Induction scheme for Σ_1^0 formula

$$\varphi(\mathbf{0}) \land \left(\left(\forall x, (\varphi(x) \Rightarrow \varphi(x+1)) \right) \Rightarrow \forall x, \varphi(x) \right)$$

Turing ideals

A Turing ideal is a class $S \subseteq 2^{\mathbb{N}}$ that is closed for Turing reduction and join.

Theorem (Friedman)

Let $\mathcal{M} := \langle \omega, S \rangle$, we have

$$\mathcal{M} \models \mathsf{RCA}_0 \iff S \text{ is a Turing ideal}$$

 $\langle \omega, {\rm COMP} \rangle$ is the smallest model of RCA_0 for the inclusion

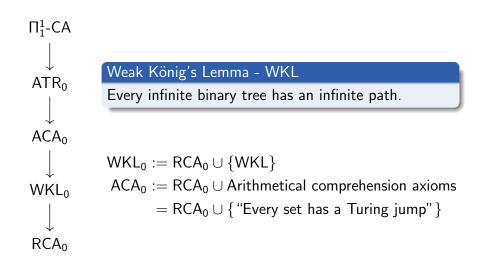
Reverse	mathematics
00000	00000

CAC for trees

Ramsey Products

Conclusion 000

The Big Five

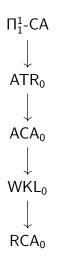


CAC for trees

Ramsey Products

Conclusion

The Big Five Phenomenon



Empirical result: a "classical" theorem is either provable in RCA_0 or equivalent (modulo RCA_0) to one of the four other subsystems.

Questions

Why is this the case? Are there natural statements that escape this phenomenon?

Table of Contents

3 CAC for trees

Ramsey's Theorem 0●00000

CAC for trees 00000000000000 Ramsey Products 000000000 Conclusion 000

What is Ramsey's theorem?

Figure: Frank P. Ramsey

Ramsey's Theorem

CAC for trees

Ramsey Products

Conclusion

What is Ramsey's theorem? (informally)

 $(0,1) \mapsto \blacksquare$ $(0,2) \mapsto$ $(1,2) \mapsto \square$ $(2, 100) \mapsto$ $(2, 109) \mapsto \blacksquare$ $(100, 108) \mapsto$ $(100, 109) \mapsto$ $(100, 110) \mapsto$

 $(0,1) \mapsto \blacksquare$ $(0,2) \mapsto$ $(1,2) \mapsto \blacksquare$ $(2, 100) \mapsto$ $(2, 109) \mapsto \blacksquare$ $(100, 108) \mapsto \blacksquare$ $(100, 109) \mapsto \blacksquare$ $(100, 110) \mapsto$ For every $X \subseteq \mathbb{N}$ and $n \in \mathbb{N}$, we define the set of *n*-tuples

$$[X]^n := \{F \subseteq X : |F| = n\}$$

For every $k \in \mathbb{N}$, a k-coloring of $[X]^n$ is a function from $[X]^n$ to $\{0, \ldots, k-1\}$.

A set *H* is *f*-homogeneous if there is a color i < k such that $f([H]^n) = i$.

CAC for trees

Ramsey Products

Conclusion 000

Ramsey's Theorem

Ramsey's Theorem - RT_k^n

For every k-coloring f of $[\mathbb{N}]^n$, there exists an infinite f-homogeneous set.

For n = 1, it is the infinite pigeonhole principle. Example for n = 2 and k = 2:

Over RCA₀, it is equivalent to consider colorings of $[\mathbb{N}]^n$ instead of $[X]^n$, for any infinite set $X \subseteq \mathbb{N}$.

Usage: first
$$f_0 \xrightarrow{\mathsf{RT}} H_0$$
, then $f_1 \upharpoonright_{H_0} \xrightarrow{\mathsf{RT}} H_1$

Theorem (Jockusch 1972)

For any n and any $k \ge 2$, $\operatorname{RCA}_0 \vdash \operatorname{RT}_k^n \implies \operatorname{RT}_{k+1}^n$

Given $f : [\mathbb{N}]^n \to k + 1$, consider

$$\widehat{f}: [\mathbb{N}]^n o k \ \overline{x} \mapsto egin{cases} k-1 & ext{when } f(\overline{x})=k \ f(\overline{x}) & ext{otherwise} \end{cases}$$

Ramsey's Theorem

CAC for trees

Ramsey Products

Conclusion 000

Hierarchy around Ramsey's Theorem

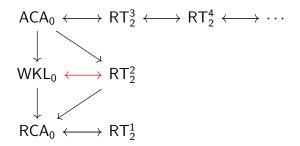


Figure: Ramsey's Theorem in the Big Five hierarchy. A red arrow means the implication does not hold.

Table of Contents

Ramsey's Theorem

CAC for trees

Ramsey Products 000000000 Conclusion 000

Theorems as problems

Many theorems are of the form

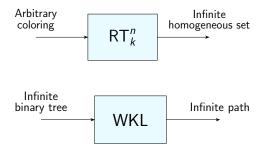
$\forall X(\Phi(X) \Rightarrow \exists Y, \Psi(X, Y))$



CAC for trees

Ramsey Products 000000000 Conclusion 000

Examples of problems

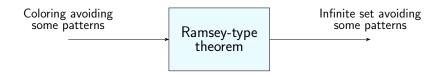


Ramsey's Theorer

CAC for trees

Ramsey Products 000000000 Conclusion 000

Ramsey-type theorems



Ramsey's Theorem

CAC for trees

Ramsey Products

Conclusion

Examples of Ramsey-type theorems

Consider **transitivity** (for n = 2 and k = 2)

$$\forall i < 2, f(x, y) = f(y, z) = i \Rightarrow f(x, z) = i$$

Erdős-Moser:

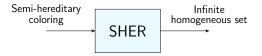
Ascending Descending Sequence:

	f(x,y)	f(y,z)	f(x,z)
Transitivity			
Ascendancy			
Heredity			

	Input	Output		
Transitivity	$< RT_2^2 \ (\Leftrightarrow CAC)$	$< RT_2^2 \ (\leqslant EM)$		
Ascendancy	$< RT_2^2 \ (\Leftrightarrow B\Sigma_2^0)$	$\Leftrightarrow RT_2^2$		
Heredity	$< RT_2^2 (= SHER)$	$\Leftrightarrow RT_2^2$		

Reverse mathematics	Ramsey's Theorem 0000000	CAC for trees	Ramsey Products	Conclusion 000
SHER				

SHER was first studied by Dorais:



Theorem

In RCA₀, the following are equivalent:

- SHER
- CAC for trees
- TAC + $B\Sigma_2^0$

CAC for trees

Ramsey Products

Conclusion 000

Statements about trees

CAC for (c.e.) trees

Every infinite (c.e.) subtree of $\mathbb{N}^{<\mathbb{N}}$ has an infinite path or an infinite antichain.

Tree AntiChain Principle - TAC (Conidis)

Every subtree of $2^{<\mathbb{N}}$ that is c.e., infinite, and completely branching, i.e., $\forall i < 2, \forall \sigma \in T, (\sigma \cdot i \in T \Rightarrow \sigma \cdot (1 - i))$, has an infinite antichain.

Ramsey's Theore 0000000 CAC for trees

Ramsey Products

Conclusion 000

The Complete Equivalence

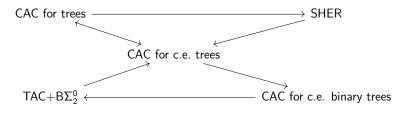


Figure: Implications between the different equivalent versions of CAC for trees

CAC for trees

Ramsey Products

Conclusion 000

Some results on TAC

Theorem

For every uniformly Δ_2^0 sequence $(A_n)_{n \in \mathbb{N}}$ of infinite Δ_2^0 sets, there exists a computable instance of TAC such that none of the A_n is a solution.

Corollary

For every low set P, there exists a computable instance of TAC without a P-computable solution.

CAC for trees

Ramsey Products

Conclusion 000

CAC for trees in the hierarchy

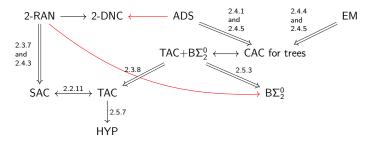


Figure: The different implications between CAC for trees and other known statements. A double arrow means that there is a strict implication, a red arrow that there is no implication.

CAC for trees

Ramsey Products

Conclusion 000

How are these implications proved?

$$\mathsf{RCA}_0 \vdash \mathsf{TAC} + \mathsf{B}\Sigma^0_2 \Rightarrow \mathsf{CAC} \text{ for trees}$$

Proof.

We have $T \subseteq \mathbb{N}^{<\mathbb{N}}$ an infinite c.e. tree. We want an infinite antichain or chain.

- T has a node with infinitely many children
- 2 T has a finite number of branching nodes
- Otherwise, we construct a completely branching infinite c.e. tree S and a function $f : S \rightarrow T$ such that:

$$\forall \sigma, \nu \in S, \sigma | \nu \Rightarrow f(\sigma) | f(\nu)$$

Table of Contents

- 2 Ramsey's Theorem
- 3 CAC for trees
- A Ramsey Products

CAC for trees

Ramsey Products

Conclusion 000

Stable Ramsey's theorem

Stability for $f : [\mathbb{N}]^{n+1} \to k$

 $\forall \vec{x} \in [\mathbb{N}]^n, \lim_y f(\vec{x}, y) \text{ exists}$

k	1	2	3	 S	s+1	<i>s</i> +2	
f(x,x+k)							

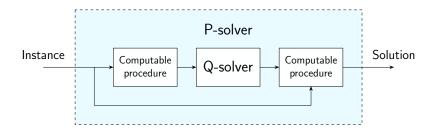
Ramsey's Theoren

CAC for trees

Ramsey Products

Conclusion

Computable reduction



CAC for trees

Ramsey Products

Conclusion 000

RT_k^n and computable reduction

The number of colors matter now

Theorem (Patey)

For all $n \ge 2$ and all $k > \ell \ge 2$, we have $SRT_k^n \not\leq_c RT_\ell^n$

In particular $\operatorname{RT}_{k+1}^n \not\leq_c \operatorname{RT}_k^n$

 $P \not\leq_c Q$ means there is an instance I of P whose solutions are complex enough, so that, for any I-computable instance \widehat{I} of Q, there is a Q-solution \widehat{S} of \widehat{I} such that $I \oplus \widehat{S}$ does not compute any P-solution of I.

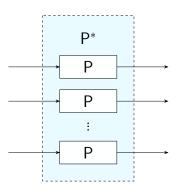
To create such an instance we use forcing.

CAC for trees

Product of problems

Question

Is it possible to solve RT_{k+1}^n by using multiple instances of RT_k^n chosen *simultaneously*?



Let P^* be the **star** of the problem P.

Does $\mathsf{RT}_{k+1}^n \leqslant_c (\mathsf{RT}_k^n)^*$ hold?

Ramsey's Theorem

CAC for trees

Ramsey Products

Conclusion 000

Answering the question

Through some technical new notions and combinatorial arguments, Liu proved the following:

Theorem (Liu)

 $\operatorname{SRT}_3^2 \not\leq_c (\operatorname{SRT}_2^2)^*$

By exploiting his method, we have shown:

Theorem

For all $n \ge 2$, $\operatorname{SRT}_3^n \not\leq_c (\operatorname{RT}_2^n)^*$

This proof relies on a statement called COH.

A set A is **almost included** in a set B, noted $A \subseteq^* B$, if $\forall^{\infty}x \in A, x \in B$

COH

For every infinite sequence of sets \vec{R} , there exists an infinite set C that is \vec{R} -cohesive, i.e., for every $i \in \mathbb{N}$, either $C \subseteq^* R_i$ or $C \subseteq^* \overline{R_i}$

COH turns arbitrary colorings into stable colorings, by considering the sequence $R_{x,i} := \{y \in \mathbb{N} : f(x,y) = i\}$ (the limit coloring $g : x \mapsto \lim f(x, -)$ is $(C \oplus f)'$ -computable).

P **preserves** \mathcal{W} : if $Z \subseteq \mathbb{N}$ verifies a property \mathcal{W} , then, for any *Z*-computable instance *X*, there is a solution *Y* such that $Z \oplus Y$ also verifies \mathcal{W} .

Proposition

If P preserves a weakness property \mathcal{W} . Then for all $X \in \mathcal{W}$, there is a model $\mathcal{M} \models \text{RCA}_0 + P$ whose second-order part is a class $S \subseteq \mathcal{W}$ such that $X \in S$.

Proposition

If a problem Q preserves a weakness property \mathcal{W} , but a problem P does not, then $RCA_0 + Q \nvDash P$.

Sketch of proof

- **First step**: There exists a Δ_2^0 coloring $f : \mathbb{N} \to 3$ that is Γ -hyperimmune.
- Second step: COH and CC preserve Γ -hyperimmunity.
- **Third step:** There a model \mathcal{M} of COH and CC such that f is Γ -hyperimmune relative to all the elements of \mathcal{M} .
- **Fourth step:** Since $\mathcal{M} \models \text{COH}$, we can turn the instances of $(\text{RT}_2^2)^*$ into stable colorings and then rely on Liu's proof of $\text{SRT}_3^2 \not\leq_c (\text{SRT}_2^2)^*$.

Table of Contents

- 2 Ramsey's Theorem
- 3 CAC for trees
- 4 Ramsey Products

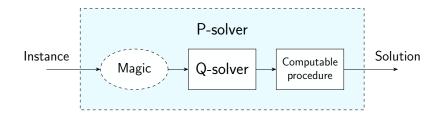
Conclusion

- Julien Cervelle, William Gaudelier, Ludovic Patey The Reverse Mathematics of CAC for trees (2022) *The Journal of Symbolic Logic*
- Julien Cervelle, William Gaudelier, Ludovic Levy Patey Cross-constraint basis theorems and products of partitions (2024) *submitted*

Thank you for your attention

Result on thin set theorem

Strong omniscient computable reduction :



Theorem

For any
$$q \geqslant$$
 2, $\mathsf{RT}^1_{q+1,q}
ot\leqslant_{soc} \mathsf{SRT}^2_{<\infty,q+1}$

Theorem (Dzhafarov et al.)

For all $k > \ell$, $\mathsf{RT}^1_k \not\leq_{sc} \mathsf{SRT}^2_\ell$

$$\forall a, ((\forall x < a, \exists y, \varphi(x, y)) \Rightarrow \exists b, \forall x < a, \exists y < b, \varphi(x, y))$$

Theorem (Kirby, Paris)

For all n,
$$I\Sigma_{n+1}^0 \Rightarrow B\Sigma_{n+1}^0 \Rightarrow I\Sigma_n^0$$

Theorem (Hirst)

 $\mathsf{RCA}_0 \vdash \mathsf{B}\Sigma_2^0 \Leftrightarrow \forall k, \mathsf{RT}_k^1$

Definition - Hyperimmunity

A function $f : \mathbb{N} \to k$ is **hyperimmune** relative to $D \subseteq \mathbb{N}$ if, for every *D*-computable sequence of mutually disjoint finite *k*-tuples $((F_{n,0}, \ldots, F_{n,k-1}))_{n \in \mathbb{N}}$ such that $\bigcup_{j < k} F_{n,j} > n$, there exists $m \in \mathbb{N}$ such that

$$\forall j < k, F_{m,j} \subseteq f^{-1}(j)$$

Mathias forcing

A Mathias condition is a pair (σ, X) where

- σ is a binary string (identified with a finite set)
- $X \in 2^{\mathbb{N}}$ is an infinite set, called **reservoir**

•
$$X \cap \{0, \dots |\sigma| - 1\} = \emptyset$$

A Mathias condition (τ, Y) extends another (σ, X) , if $Y \subseteq X$ and $\tau \succcurlyeq \sigma$ where $\tau - \sigma \subset X$.

The interpretation of a Mathias condition is given by $[(\sigma, X)] := \{Z \in [\sigma] : Z \subseteq \sigma \cup X\}.$

Other forcing (3.3.11)

- A variant of Mathias forcing with conditions of the form $\left((\vec{F_{\alpha}})_{\alpha\in 2^r},\vec{A}\right)$ where
 - *F*[˜]_α is an *r*-tuple of finite sets *g*-homogeneous for the colors α, i.e. ∀s < r, F_{α,s} ⊆ g_s⁻¹(α(s))
 - \vec{A} is an *r*-tuple of infinite sets in \mathcal{M} such that $\forall \alpha \in 2^r, \forall s < r, \min A_s > \max F_{\alpha,s}$

A condition $((\vec{E_{\alpha}})_{\alpha \in 2^{r}}, \vec{B})$ extends another $((\vec{F_{\alpha}})_{\alpha \in 2^{r}}, \vec{A})$ if, for every $\alpha \in 2^{r}$ and every s < r, we have $E_{\alpha,s} \supseteq F_{\alpha,s}$, $B_{s} \subseteq A_{s}$, and $E_{\alpha,s} - F_{\alpha,s} \subseteq A_{s}$.

Reverse	mathematics

Ramsey's Theorem

CAC for trees

Ramsey Products

Conclusion 000

Cross-trees

$$\mathcal{X}_{<\mathbb{N}} := 3^{<\mathbb{N}} \times (2^{<\mathbb{N}})^r$$

Definition

A **cross-tree** is a set $T \subseteq \mathcal{X}_{<\mathbb{N}}$ which is downward-closed for the prefix relation \preccurlyeq , and such that $\forall (\rho, \sigma) \in T, \forall i < j < r, |\sigma_i| = |\sigma_j| \text{ and } |\sigma| \leq |\rho|.$

Definition - Proposition

A class
$$\mathcal{P} \subseteq \mathcal{X}$$
 is *left-full* below $(\rho, \sigma) \in \mathcal{X}_{<\mathbb{N}}$ if

$$\forall X \in [\rho], \exists Y \in [\sigma], (X, Y) \in \mathcal{P}$$

Equivalently

$$\forall \mu \succcurlyeq
ho, \exists \tau \succcurlyeq \sigma, |\tau| = |\mu| \text{ and } (\mu, \tau) \in T$$

Cross-constraint

Definition

Let X be an infinite set. A pair of instances (f,g) of RT_k^1 is finitely compatible on X if for all color i < k the set $X \cap f^{-1}(i) \cap g^{-1}(i)$ is finite. Whenever $X = \mathbb{N}$, we simply say that (f,g) is finitely compatible. Also, note that the negation of "finitely compatible" is "infinitely compatible"

CC

For any left-full cross-tree $T \subseteq \mathcal{X}_{<\mathbb{N}}$, there is a pair of paths $(X^i, Y^i)_{i<2}$ such that (X^0, X^1) is finitely compatible, and for all s < r, (Y^0_s, Y^1_s) is infinitely compatible.

Preservation of weakness properties

A weakness property is a class $\mathcal{W} \subseteq 2^{\mathbb{N}}$ that is downward-closed for Turing reduction.

Example $\mathcal{W}_f := \{X \subseteq \mathbb{N} : f \text{ is hyperimmune relative to } X\}$

A problem P **preserves** a weakness property \mathcal{W} if, for all $Z \in \mathcal{W}$, any Z-computable instance of P admits a solution Y such that $Z \oplus Y \in \mathcal{W}$.

COH preserves hyperimmunity.