
École doctorale n° 532 MSTIC

Thèse de doctorat en Informatique

présentée par
William GAUDELIER

sous la direction de
Julien CERVELLE et Ludovic LEVY PATEY

Computational analysis of
Ramsey-type theorems

Soutenue publiquement le 18 octobre 2024

Jury :
Arnaud DURAND Université Paris-Cité Président du jury
Olivier BOURNEZ École Polytechnique Rapporteur
Paul SHAFER University of Leeds Rapporteur
Laura FONTANELLA Université Paris-Est Créteil Examinatrice
Vera FISCHER Universität Wien Examinatrice
Ludovic LEVY PATEY Université Paris-Cité Directeur de thèse
Julien CERVELLE Université Paris-Est Créteil Directeur de thèse

CONTENTS

Résumé / Abstract . 5
Remerciements . 6
Résumé détaillé de la thèse . 8
Short thesis summary . 13
Main contributions . 15

1 Introduction 19
1.1 Notation . 19

1.1.1 Set theoretic notation . 19
1.1.2 Strings and sequences . 20

1.2 Computability theory . 21
1.2.1 History . 21
1.2.2 Basic notions . 22
1.2.3 Computably enumerable sets and the halting problem . . . 23
1.2.4 Oracles . 24
1.2.5 Turing reduction and Turing jump 25
1.2.6 The arithmetic hierarchy and Post’s theorem 27
1.2.7 Approximations and Shoenfield’s lemma 28
1.2.8 Hyperimmunity . 30
1.2.9 Trees and Π0

1-classes . 32
1.2.10 Basis theorems . 35
1.2.11 PA degrees . 36
1.2.12 Forcing . 38

1.3 Reverse mathematics . 41
1.3.1 Overview . 41
1.3.2 Second-order arithmetic . 41
1.3.3 Models . 42
1.3.4 RCA0 . 44
1.3.5 The Big Five . 45
1.3.6 Problems and reducibilities 47
1.3.7 Separation and preservation 49
1.3.8 Ramsey’s theorem . 50

3

Preamble

2 CAC for trees 65
2.1 Introduction . 65

2.1.1 A chain-antichain theorem for trees 65
2.1.2 Ramsey-like statements . 66
2.1.3 Forbidden patterns on 3 variables 67

2.2 CAC for trees and its equivalences 68
2.3 Probabilistic proofs of SAC . 73
2.4 Relation between CAC for trees and ADS+ EM 78
2.5 TAC, lowness and hyperimmunity 80
2.6 Equivalence between CAC for trees and SHER 84
2.7 Stable counterparts: SADS and CAC for stable c.e. trees 89
2.8 Conclusion . 92

2.8.1 Open questions . 93

3 Cross-constraint basis theorems and products of partitions 95
3.1 Introduction . 95

3.1.1 Products of problems . 95
3.1.2 Notation . 97

3.2 Core ideas . 97
3.2.1 Separating theorems . 98
3.2.2 Cross-constraint techniques 100

3.3 General framework . 101
3.3.1 Cross-trees . 101
3.3.2 Left-fullness . 102
3.3.3 Parameterized theorems . 104

3.4 Cross-constraint basis theorems . 110
3.4.1 Conditions . 110
3.4.2 Cross-constraint ∆0

2 basis theorem 111
3.4.3 Combinatorial lemmas . 113
3.4.4 Cross-constraint cone avoidance basis theorem 117
3.4.5 Cross-constraint preservation of non-Σ0

1 definitions 119
3.4.6 Cross-constraint low basis theorem 121

3.5 Products of instances for Ramsey’s theorem 123
3.5.1 Γ-hyperimmunity . 123
3.5.2 Preservation of Γ-hyperimmunity for COH 129
3.5.3 Separation results . 130

4 Thin set theorem and omniscient reduction 133

Bibliography 138

Index 147

4

Résumé / Abstract

Résumé / Abstract

Version française
Dans cette thèse, nous étudions le contenu calculatoire du théorème de Ramsey
ainsi que d’autres énoncés associés. Pour ce faire, nous utilisons différentes no-
tions de réductibilité et des outils provenant de la théorie de la calculabilité et des
mathématiques à rebours. Nous utilisons des techniques récentes pour établir dif-
férents nouveaux résultats de séparation entre des énoncés de Ramsey, en fonction
du nombre de couleurs et d’instances. Nous obtenons également une équivalence
entre des énoncés combinatoires sur les arbres et une variation du théorème de
Ramsey, nous permettant ainsi d’unifier des résultats précédemment connus, tout
en en fournissant de nouveaux.

English version
In this thesis, we investigate the computational content of Ramsey’s theorem and
other related statements. To do so, we use various notions of reducibility and tools
provided by the frameworks of computability theory and reverse mathematics. We
use recent techniques to establish several new separation results between Ramsey
statements, depending on the number of colors and instances. We also obtain an
equivalence between some combinatorial statements on trees and a variation of
Ramsey’s theorem, thus unifying previously known results, while providing new
ones.

Mots clés / Keywords
• logique, calculabilité, mathématiques à rebours, théorème de Ramsey
• logic, computability theory, reverse mathematics, Ramsey’s theorem

5

Preamble

Remerciements
Nous voici arrivés à la partie la plus compréhensible de cette thèse. J’ai beaucoup
appris durant ces trois années, pas seulement sur le plan mathématique, et cela je
le dois pour beaucoup aux personnes qui m’entourent. Il est donc temps pour moi
de vous remercier, vous êtes nombreux·ses, et j’espère n’oublier personne.

Merci, en premier lieu, à mes directeurs, Ludovic et Julien, pour tout le temps
et les conseils qu’ils m’ont accordés. À de nombreuses reprises, il est probable qu’ils
aient pensé “il comprend vite, mais il faut lui expliquer longtemps”, et malgré cela
ils ont tenu bon.

Merci aux membres du jury. Olivier Bournez et Paul Shafer, pour leur relec-
ture attentive du présent manuscrit, qui a participé à son amélioration. Laura
Fontanella, Vera Fischer, et Arnaud Durand, qui ont accepté d’examiner mon tra-
vail. Merci également à Bruno Durand et Catalin Dima qui ont été membres
de mon CSI. Thank you also to all the researchers and students I met during
conferences and summer schools, in particular Jun Le and Gavin.

Merci aux personnes que j’ai côtoyées à Créteil, et particulièrement aux mem-
bres de l’équipe du LACL, qui sont très sympathiques et accueillants. Benoît, pour
m’avoir accepté en stage et fait découvrir les mathématiques à rebours. Flore et
Nicolas, pour leur aide administrative et matérielle. Julien G., Laura, Aurore,
Gaétan, Florent, Luc D., Youssouf, Léo, Fatemeh, et Nihal, avec qui j’ai eu le
plaisir de donner des TD. Patrick, Daniele, Régine, Adrien, Luidnel, et Luc P.,
avec qui j’ai apprécié discuter, que ce soit lors du déjeuner ou bien de séminaires.
Ahmed et Quentin, mes frères de thèse, à qui j’ai transmis tout mon savoir (non).
Enfin, Hong-Linh, Ada, Abdel, Olivier, Charles, et Théo, qui donnent de la vie au
bureau.

Merci aux personnes que j’ai côtoyées au bâtiment Sophie Germain. Armande,
Alex, Marc, Tristan et Victor, avec qui j’ai toujours d’intéressantes discussions,
parfois autour d’un verre. Juan P., pour ses piles de cahiers et son bain de bouche.
Corentin, dit “petit flan”. Gabriel, qui cachait si bien l’escargot. Alexandre, dont
les capacités de mime restent inégalées. Leonardo, qui me doit légalement une
meule de parmesan s’il lit ces lignes. Arthur, qui slay abondamment et avec qui
j’espère jouer à Isaac online bientôt. Tal, pour tous les bons moments qu’on a
passés et pour avoir été Heather avec moi. Ce bon vieux weeb de Fabien, qui
m’a si gentiment aidé pour mon four. Élie, avec qui j’ai eu le plaisir d’organiser
les Bourbakettes quelque temps. Dorian, pour nos parties d’échecs et de billard
endiablées. Marie-Camille, ma partenaire de commandes goûter. Mario, avec qui
je rigole toujours bien. Alexis, même si je comprends toujours pas trop pourquoi il

6

Remerciements

est là. Paul W., que j’apprécie croiser aléatoirement. Jérôme, dit “tonton cantine”.
Merlin et Vincent B., dont j’apprécie grandement le tea seminar. Juan-Ramón,
Obrad, Tom, Francesca R., Razvan, Mathieu, Vincent D., et Kemo, avec qui
j’ai toujours grand plaisir à échanger. Ainsi que les nouveaux doctorants, Ivory,
Werner, Francesca P., Brian, Paul Le B., que je ne connais pas encore bien, mais
qui sont très chouettes. Enfin, un remerciement spécial pour Agathe, je suis certain
que nous allons passer encore beaucoup de beaux moments ensemble. :)

Merci à mes amis de Saint-Étienne, qui sont à mes côtés depuis longtemps
maintenant. Mehdi, Mathieu, Juliette, Léo, Margot, et Yohann. Bien que l’on se
voit moins souvent maintenant, cela reste un véritable plaisir. Que ce soit pour
faire une raclette ou de l’escalade, je sais que je peux compter sur vous.

Merci à mes copains d’Internet. Mon vieil ami piticroissant, aka Quentin, avec
qui j’ai découvert la programmation. Gaël, qui me partage musiques et photos
comme personne. La communauté Discord de LeLoMBriK, avec qui je partage
insomnies, memes, et moments de tendresse : soupyr, Alix, tchenzi, midoul, le
Sergent Gnaricot, jerobou, minemo, le Professeur Farandole, tapis, pinardo, mer-
son, Jules-Renard dit “jr”, Monsieur Extincto, error, dandy, le Vétéran, magic, et
bien sûr Billy Bolognaise.

Enfin, un grand merci à ma famille. Mes parents, Fabienne et Yves, pour
leur soutien et leur amour inconditionnels. Jérémy, ma pipelette favorite, que
j’adore écouter, ainsi que sa femme Laura et mes adorables neveux Otis et Caleb.
Benjamin, qui m’aidait jadis à battre les boss de jeux vidéo. Anaïs, la grande sœur
la plus gentille que je connaisse, avec son mari Mahesh et Gourgour. La minoune,
que je n’oublie pas. Olivier et Christove, chez qui les étés passés restent parmi
mes meilleurs souvenirs. Enfin, ma reine Tinous que j’adore.

Merci à vous tous.

7

Preamble

Résumé détaillé de la thèse
Ce document est un rapport de thèse issu de trois années de recherche au sein du
LACL (Laboratoire d’Algorithmique, Complexité et Logique) à l’université Paris-
Est Créteil (UPEC), sous la direction de Julien Cervelle et Ludovic Levy Patey.
Il traite du contenu calculatoire des énoncés mathématiques liés à un théorème de
combinatoire connu sous le nom de théorème de Ramsey. Les différentes études
sont réalisées en utilisant les outils de la calculabilité et des mathématiques à
rebours. Nous commençons par présenter brièvement tout cela.

Théorie de la calculabilité
La théorie de la calculabilité est une branche de la logique mathématique apparue
au début du 20ème siècle suite à la crise des fondements, elle étudie les limites de ce
qui est calculable par algorithmes. Elle a tout d’abord permit de définir ce qu’est
un algorithme et d’établir qu’il s’agit d’une notion robuste, c’est-à-dire que l’on
possède plusieurs modèles mathématiques qui semblent capturer cette notion, et
dont la puissance est la même. Ce fait empirique est connu sous le nom de “thèse
de Church-Turing”.

Parmi les modèles équivalents, les plus connus sont les machines de Turing, le
λ-calcul, et les fonctions µ-récursives. Une fonction f : N → N est alors dite “cal-
culable” lorsqu’il existe un algorithme qui, pour toute entrée n, donne en sortie
f(n). Cette définition peut s’adapter pour considérer plusieurs entiers en entrée.
En particulier un ensemble d’entiers A est dit calculable s’il existe un algorithme
qui, pour tout entier n en entrée, donne 1 en sortie si n ∈ A et 0 si n /∈ A. Rapide-
ment, par des arguments de diagonalisation, l’existence d’ensemble non-calculables
a été établit, et un exemple important finit par émerger, il s’agit du “problème
de l’arrêt”. Ce dernier peut être encodé par un ensemble et consiste à savoir si,
pour un algorithme et une entrée donnés, nous sommes capables de dire si cet
algorithme finira par s’arrêter sur cette entrée. À partir de cela, c’est toute une
hiérarchie de complexité des ensembles d’entiers qui a été mis à jour : la hiérarchie
de Turing. Cette dernière repose sur la réduction Turing, notée 6T , définit par
A 6T B, lorsqu’il existe un algorithme qui peut calculer A si on lui donne accès
à l’ensemble B (i.e. sa fonction caractéristique). Son étude a suscité de nombreux
travaux de la part des chercheurs, ce qui a considérablement fait avancer la cal-
culabilité par la mise au point de notions, de théorèmes, et plus généralement de
techniques de construction avancées, dans le but d’obtenir des ensembles vérifi-

8

Résumé détaillé de la thèse

ant des propriétés bien précises. Parmi ces méthodes les plus importantes sont le
forcing et la méthode de priorité (à blessures finies ou infinies). Néanmoins, sa
compréhension est encore incomplète et il reste à ce jour des questions ouvertes
importantes.

Mathématiques à rebours

Les mathématiques à rebours, en anglais reverse mathematics, sont une branche
de la logique mathématique, fondée en 1974 par Harvey Friedman. Le but originel
du domaine était de chercher à savoir quels sont les axiomes les plus faibles perme-
ttant de prouver un théorème donné, d’où le nom. De manière plus générale, les
mathématiques à rebours donnent un cadre formel dans lequel les outils provenant
de la théorie de la calculabilité et la théorie de la preuve peuvent être utilisés pour
mettre à jour l’aspect constructif des théorèmes, et comment ces derniers interagis-
sent les uns avec les autres. En outre, il existe des notions formelles correspondant
au fait qu’un théorème est prouvable à partir d’un autre. Ces objectifs amènent
très souvent à établir de nouvelles preuves, axiomatiquement plus simples, pour
des théorèmes connus.

Le cadre formel des mathématiques à rebours est celui de logique du second
ordre. C’est-à-dire que les formules logiques considérées peuvent quantifier sur des
prédicats. Plus précisément on s’intéresse à certains sous-systèmes axiomatiques
de l’arithmétique du second ordre. Ce choix provient du fait que beaucoup d’objets
mathématiques peuvent être encodés par des entiers ou ensembles d’entiers, ainsi
il devient possible d’exploiter les puissants outils développés en calculabilité. A
titre d’exemple, les fonctions continues de R dans R peuvent être encodées par
des ensembles d’entiers. Pour cela il faut utiliser le fait que R possède une base
dénombrable, et que la continuité peut s’exprimer en parlant uniquement de la
préimage des éléments de cette base.

Dans ce cadre, les théorèmes peuvent alors s’exprimer par des énoncés du second
ordre, de la forme ∀X, (Φ(X) =⇒ ∃Y,Ψ(X,Y)), où Φ et Ψ sont des formules
arithmétiques, que l’on peut comprendre de la manière suivante : étant donné un
problème P, si X est une instance de P, alors Y est une solution à l’instance X
de P. Un exemple bien connu en mathématiques à rebours est le lemme faible de
König, noté WKL, qui dit que pour tout arbre binaire infini possède un chemin
infini. Une instance de WKL est un arbre binaire infini T , et une solution est un
chemin infini dans T . Représenter les théorèmes de cette manière permet de les

9

Preamble

manipuler et de définir plusieurs notions de “réduction”, chacune précisant l’idée
qu’un théorème est plus fort qu’un autre. L’une d’entre elles est la réduction
calculatoire, qui dit la chose suivante. Un problème P se réduit calculatoirement
à Q, noté P 6c Q, si, toute instance I de P calcule une instance Î de Q telle que,
pour toute solution Ŝ de Î, on a qu’une solution à I peut être calculée à partir des
deux ensembles I et Ŝ.

Les mathématiques à rebours définissent cinq sous-systèmes axiomatiques de
l’arithmétique du second-ordre, appelés “Big Five”. Le plus faible d’entre eux
s’appelle RCA0, et il sert de base pour les raisonnements. Il correspond globale-
ment aux mathématiques calculables, et permet de dire qu’un théorème P est plus
puissant qu’un théorème Q lorsque RCA0 + {P} ` Q. Les quatre autres sous-
systèmes sont des extensions de RCA0, linéairement (et strictement) ordonnés par
la relation que nous venons de décrire. Dans cette thèse nous ne nous intéresseront
qu’aux trois premiers (par ordre de puissance), à savoir RCA0, WKL0 et ACA0. Une
classification empirique étonnante est très vite apparue concernant les Big Five :
étant donné un théorème P des mathématiques “classiques” (que l’on peut ex-
primer en arithmétique du second ordre, typiquement les théorème des valeurs
intermédiaires), soit il est prouvable dans RCA0, soit RCA0 + {P} est équivalent à
un des quatre autres sous-systèmes.

C’est alors que le théorème de Ramsey entre en jeu, car il est le premier exem-
ple d’un théorème échappant à ce phénomène. Ceci explique l’intérêt particulier
que lui porte la communauté des mathématiques à rebours qui, depuis près de
50 ans maintenant, élabore et raffine des techniques complexes afin de mieux le
comprendre.

Le théorème de Ramsey

Étant donné un ensemble X ⊆ N et un entier n ∈ N, on désigne par [X]n la
collection des sous-ensembles de X de cardinal n. Pour tout ensemble X ⊆ N et
k ∈ N, un k-coloriage de X est une fonction de X dans {0, . . . , k−1}. Le théorème
de Ramsey a été découvert en 1928 par le mathématicien Frank Ramsey. Pour
deux entiers n et k donnés, on le note RTn

k , et il affirme que pour tout k-coloriage f
de [N]n, il existe un sous-ensemble infini H ⊆ N tel que card

(
f
(
[H]n

))
= 1. Un tel

ensemble est dit f -homogène. Lorsque n = 1 on retrouve une variante du principe
des tiroirs : une partition finie de N contient nécessairement un ensemble infini. En
revanche, à partir de n = 2 il devient bien plus complexe, c’est d’ailleurs pour cette

10

Résumé détaillé de la thèse

valeur que le théorème échappe aux Big Five. Plusieurs décennies de recherche et
l’étude de divers théorèmes proches de celui de Ramsey ont été nécessaires afin
de prouver ce résultat. Ces variations du théorème de Ramsey sont dit “de type
Ramsey”.

Plus concrètement, il a été montré que RTn
k et RTn

` sont équivalents au-dessus
de RCA0, pour tout n ∈ N et tout k, ` > 2. Ainsi, pour chaque n, il suffit de
s’intéresser à k = 2. Pour n = 1, on peut prouver RT1

2 dans RCA0. Pour n > 3, il a
été prouvé que RCA0+ {RTn

k} est équivalent à ACA0. Le cas n = 2 a été beaucoup
plus difficile à déterminer, mais il a été montré que RCA0 + {RT2

2} est strictement
compris entre ACA0 et RCA0, tout en étant incomparable à WKL0.

La thèse

La présente thèse se place donc dans la lignée des travaux décrits ci-dessus. Elle
s’articule en quatre chapitres, le premier étant une introduction aux domaines et
résultats connus, tandis que les trois autres contiennent des contributions nouvelles
concernant l’analyse de la puissance calculatoire de divers théorèmes de type Ram-
sey, et sont assez indépendants. Nous résumons désormais le contenu de chaque
chapitre.

Chapitre 1

Le chapitre 1 introduit le bagage de connaissances nécessaires à la compréhension
des autres chapitres. Bien qu’une certaine familiarité soit attendue de la part du
lecteur, nous passons en revue les bases de la calculabilité et des mathématiques
à rebours. On aborde notamment la hierarchie arithmétique, l’hyperimmunité, les
classe Π0

1 et théorèmes de base, les degrés PA, ainsi que le forcing. Nous proposons
également un petit résumé historique concernant le théorème de Ramsey et ses
résultats, du point de vue des mathématiques à rebours. Ceci afin de donner une
appréciation plus substantielle et globale de son étude, notamment en présentant
une partie de ses articles et contributeurs.

11

Preamble

Chapitre 2

Le chapitre 2 explore des variantes du théorème de Ramsey pour les paires (RT2
2),

où le coloriage en entrée et l’ensemble infini en sortie peuvent être restreints.
Par exemple, pour un coloriage f : [N]2 → 2, on peut demander à l’ensemble
solution de ne pas être f -homogène, mais seulement f -transitif, i.e. ∀i < 2,∀x <
y < z, f(x, y) = f(y, z) = i =⇒ f(x, z) = i. Ces théorèmes nous amènent à
concentrer notre étude sur une variante de l’énoncé CAC dans le cas particulier où
l’ordre considéré est la relation de prédécesseur dans un arbre. Cet énoncé, bien
connu en mathématiques à rebours, affirme que tout ordre infini partiel possède soit
une chaine infinie, soit une antichaine infinie. Sa variante sur les arbres s’est avérée
avoir de multiples caractérisations, ce qui en fait une notion robuste. Parmi ses
énoncés équivalents on note une variante de RT2

2 appelée SHER, ainsi que l’énoncé
TAC, déjà étudié de manière indépendante par Conidis, et qui porte sur les arbres
binaires complètement branchants, c’est-à-dire les arbres tels que ∀i < 2, ∀σ ∈
T, (σ · i ∈ T =⇒ σ · (1− i) ∈ T). L’énoncé affirme qu’un arbre c.e. binaire infini
qui est complètement branchant contient une antichaine infinie. Ainsi, plusieurs
théorèmes établis indépendamment (notamment par Conidis et Dorais) ont été
obtenus ou améliorés, dans un cadre plus unifié. Les résultats de ce chapitre ont
été acceptés pour publication dans le Journal of Symbolic Logic [CGP23].

Chapitre 3

Le chapitre 3 cherche à établir le résultat de séparation suivant : ∀n, SRTn
3 66c (RT

n
2)

∗,
où SRTn

k désigne le théorème de Ramsey où les coloriages f : [N]n → k considérés
sont stables, i.e. ils vérifient ∀~x ∈ [N]n−1, ∃i < k, ∃s,∀y > s, f(~x, y) = i. Autrement
dit, on établit qu’un produit arbitraire fini du RTn

2 ne peut pas calculatoirement
résoudre un unique SRTn

3 . Il s’agit d’une amélioration d’un théorème établit par
Liu, à savoir SRT2

3 66c (SRT
2
2)

∗.

Pour arriver à ce résultat, nous nous basons sur une méthodologie récente et
technique, mise en place par Liu, afin de prouver des théorèmes de base et de
préservation dans le cadre du problème “cross-constrait”. Une étape clé con-
siste à prouver qu’une variante de l’hyperimmunité, nommée Γ-hyperimmunité,
est préservée par l’énoncé COH.

12

Short thesis summary

Chapitre 4
Ce chapitre, plus court que les précédents, établit un résultat de séparation pour
une réduction dite “omnisciente forte”. On désigne par RTn

k,q la variante du
théorème de Ramsey où l’ensemble solution doit utiliser moins de q couleurs
(au lieu d’une seule dans le cas habituel). On prouve dans ce chapitre que
RT1

q+1,q 66soc SRT2
<∞,q+1. Pour arriver à cela, on se base sur une construction

par forcing de Dzhafarov, Patey, Solomon, et Westrick.

Short thesis summary
This document is a thesis report resulting from three years of research at LACL
(Laboratoire d’Algorithmique, Complexité et Logique), under the supervision of
Julien Cervelle and Ludovic Levy Patey. It deals with the computational content of
mathematical statements related to a theorem of combinatorics known as Ramsey’s
theorem. The different studies are carried out by using the tools of computability
theory and reverse mathematics.

Computability theory provides the necessary equipment to deal with the notions
of algorithm and computation. In particular, it uncovers a whole hierarchy of
complexity for sets, and supplies advanced techniques and theorems to obtain sets
with certain properties.

Reverse mathematics use the framework of second-order arithmetic. The objects
we are interested in must be encodable as integers or sets of integers. Theorems
are then second-order formulas that are generally seen as problems with instances
and solutions. More importantly, there are formal notions of “reducibility” that
make precise the idea of one theorem being stronger than another.

In this framework, the goal of many researchers has been to establish a detailed
picture of the relationships between known theorems, in order to better understand
them. In that regard, Ramsey’s theorem has received a particular interest, as it
did not fit in the “Big Five” categories under which other theorems usually fall.
This thesis contributes to this classification with new theorems and by simplifying
the context of some known results.

Here we briefly explain the content of each chapter.
• In Chapter 1, we introduce the background of knowledge necessary for the

understanding of the other chapters. Although some familiarity is expected
from the reader, we go through the basics of computability theory and reverse
mathematics. We also offer a short survey on Ramsey’s theorem in reverse

13

Preamble

mathematics.
• In Chapter 2, we explore variations of Ramsey’s theorem for pairs (RT2

2),
where either the input coloring or the output infinite set is restricted. We
focus the study on a variation of the well-studied statement CAC, in the
particular case where the order considered is the predecessor relation in a
tree. This statement turned out to have multiple characterizations, making it
a robust notion. In particular, one equivalent statement is a variation of RT2

2

called SHER. Some theorems presented here are independent rediscoveries
but were obtained in a more unified setting. The results of this chapter were
published in the Journal of Symbolic Logic [CGP23].

• In Chapter 3, we explore computable reduction for multiple instances of
Ramsey’s theorem. We establish a separation result by using basis and
preservation theorems for what we call the “cross-constrain problem”. This
is done with a recent combinatorial technique and a variation of hyperim-
munity.

• Finally in Chapter 4, we establish a separation result, for strong omniscient
reduction, between Ramsey’s theorem for singletons and its stable counter-
part for pairs, depending on the number of colors involved.

14

Main contributions

Main contributions
In this section, we highlight the main theorems uncovered during this thesis.

Chapter 2
By combining Theorem 2.2.4 and Proposition 2.6.3 + Proposition 2.6.6, we estab-
lished the following equivalence between three different statements.

Theorem. The following statements are equivalent over RCA0 and computable
reduction:

(1) CAC for trees

(2) TAC+ BΣ0
2

(3) SHER

With Proposition 2.3.3+Lemma 2.2.11, we established that TAC has a proba-
bilistic proof. This is an interesting property since very few theorems studied in
reverse mathematics possess it.

Theorem. The measure of the oracles computing a solution for a computable
instance of TAC is 1.

With Theorem 2.5.1, we provided a general statement regarding TAC that en-
compasses some known results.

Theorem. Let (An)n∈N be a uniformly ∆0
2 sequence of infinite ∆0

2 sets. There
is a computable instance of TAC such that no An is a solution.

Finally, with Corollary 2.7.9 we have an equivalence between the stable coun-
terparts of the statements mentioned above.

Theorem. The following are equivalent over RCA0:
(1) CAC for stable trees

(2) SHER for stable colorings

15

Preamble

Chapter 3
Theorem 3.3.14 is a technical result that is essential to prove the separation theo-
rems of this chapter.

Theorem. Let M be a countable cross-constraint ideal such that M |= COH

and let f : N → 3 be hyperimmune relative to any element of M, then for any
r ∈ N and any g0, . . . , gr−1 : [N]

2 → 2 in M, there are infinite gi-homogeneous
sets Gi for every i < r, such that

⊕
i<rGi does not compute any infinite

f -homogeneous set.

Many results of this chapter are basis and preservation theorems related to the
cross-constraint problem.

Firstly, Theorem 3.4.19 is the equivalent of the non-Σ0
1 basis theorem.

Theorem (Cross-constraint preservation of non-Σ0
1 definitions). Let C be a

non-Σ0
1 set. Any computable instance T of CC, has a solution (X i, Y i)i<2 such

that C is not Σ0
1 relative to (X0, Y 0)⊕ (X1, Y 1).

Secondly, Theorem 3.4.23 is the equivalent of the low basis theorem.

Theorem (Cross-constraint low basis). Any left-full computable instance T

of CC, has a solution (X i, Y i)i<2 such that (X0, Y 0)⊕ (X1, Y 1) is low.

And thirdly, Theorem 3.5.16 states that the notion of Γ-hyperimmunity is pre-
served by COH.

Theorem. Let g ∈ 3N be a Γ-hyperimmune function and R0, R1, . . . be a
uniformly computable sequence of sets. Then there is an ~R-cohesive set G
such that g is Γ-hyperimmune relative to G.

The results established in this chapter ultimately lead to the separation stated
in Theorem 3.5.21.

Theorem. For every n > 2, SRTn
3 66c (RT

n
2)

∗

16

Main contributions

Chapter 4
The main result of this chapter is Theorem 4.0.2, which establishes the following
separation.

Theorem. For all q > 2, we have RT1
q+1,q 66soc SRT

2
<∞,q+1

17

CHAPTER 1

INTRODUCTION

This thesis deals with the computational content of mathematical statements
related to a theorem of combinatorics known as Ramsey’s theorem. To do so, it
uses the framework and tools of computability theory and reverse mathematics.
In this first chapter we give the relevant prerequisites necessary to the understand-
ing of the other chapters. Fundamental definitions and results of computability
theory and reverse mathematics are presented. A particular focus is given to the
study of Ramsey’s theorem in reverse mathematics, since it is at the center of the
different contributions of this thesis. Nonetheless it is recommended to have some
familiarity with these topics before reading past the introduction. For a more in-
depth introduction, the author recommends [Sim09], [Hir15], [Soa16], [DM22] and
[MP22].

1.1 Notation
Before diving into the different subjects, we define some basic notation that will
be used throughout the entire document.

1.1.1 Set theoretic notation
Given a set A, its power set is denoted by P(A). A binary relation ./ on a set
A is well-founded when there is no infinite sequence (xn)n∈N ∈ AN such that
∀n, xn ./ xn+1. Unless stated otherwise, the word set is used to designate a subset
of N, and class is used to designate a subset of P(N).

19

Chapter 1 Introduction

Given x, y ∈ N∪{±∞}, we define Jx, yK := {z ∈ N : z > x∧z 6 y}. If a bracket
symbol is flipped then its associated inequality is strict, e.g. Jx, yJ := {z ∈ N : z >
x ∧ z < y}. Very often in the document, the integer n ∈ N is identified with the
set J0, nJ. This ambiguity should not cause any problem thanks to context. In
particular, for any k, ` ∈ N, the set of maps J0, kJJ0,`J, is often identified with k`.
Again, context should get rid of any ambiguity.

For any n ∈ N, there is a bijection 〈−, . . . ,−〉 from Nn to N, which verifies
∀x, y ∈ N, 〈x1, . . . , xk〉 > max{x1, . . . , xk} and which is increasing on each variable.
Given a set A, we denote by χA its characteristic function, i.e. ∀x, x ∈ A ⇔
χA(x) = 1 and x /∈ A ⇔ χA(x) = 0. Often in the document, a set is identified
with its characteristic function.

The symbols ∃∞x and ∀∞x are abbreviations for ∀y, ∃x > y and ∃y, ∀x > y

respectively. The former should be read as “there are infinitely many x” and the
latter as “for all but finitely many x”. Note that they are the dual of each other.

Given two

1.1.2 Strings and sequences

Often in the document, a set is identified with the infinite binary sequence corre-
sponding to its characteristic function. More genrally, we may identify functions
from N to N with infinite sequences of integers, i.e. f : N → N corresponds to(
f(n)

)
n∈N. Infinite sequences and sets are both denoted by capital Latin letters

X, Y , Z, A, etc.
A string is a finite sequence of integers. The set of all strings is denoted

N<N :=
⋃

`∈N N
`. More particularly, given k ∈ N, the strings composed only of

integers within the set k are called k-valued strings. The set of all k-valued
strings is denoted k<N :=

⋃
`∈N k

`. For k = 2, such strings are called binary
strings. We will generally denote strings by Greek letters σ, τ , µ, ρ, etc.

The length of a given string σ : `→ N is the integer |σ| := `. The set of strings,
resp. k-valued strings, of length less than n ∈ N is denoted N<n :=

⋃
`<n N

`, resp.
k<n :=

⋃
`<n k

`. The empty string ∅ → N is denoted ε. Given two strings σ
and τ of respective length ` and m, we define their concatenation as the finite
sequence σ ·τ : `+m→ N which, given j < `+m, equals σ(j) if j < `, and τ(j−`)
otherwise. Concatenation is an associative operation, so a string σ : `→ N can be
written as σ(0) · . . . · σ(` − 1). For any infinite sequence X and ` ∈ N, we define
X�` := X(0) · . . . ·X(`− 1)

20

1.2 Computability theory

The prefix relation on strings, denoted ≺, is defined by σ ≺ τ ⇐⇒ |σ| <
|τ | ∧ ∀j < |σ|, σ(j) = τ(j). It is a strict partial order, whose reflexive closure is
denoted by 4. If two strings σ and τ are incomparable for ≺, we write σ|τ .
Moreover, for any string σ and infinite sequence X, we also write σ ≺ X to mean
that σ is an initial segment of X, i.e. X�|σ| = σ. Finally, the cylinder of a string
σ is [σ] := {X ∈ 2N : σ ≺ X}.

1.2 Computability theory
We begin this section with a short historical introduction on the subject. For more
information see [Soa16, Part V]. The rest of the section gives formal definitions
and fundamental results regarding basic notions in computability theory. For a
more in-depth study, see [Soa16], [MP22] or [DM22].

1.2.1 History
At the beginning of the 20th century, mathematicians became increasingly inter-
ested in the familiar notion of “procedure”. They were motivated by the need
for a more solid and formal foundation for mathematics, due to paradoxes in set
theory that were uncovered by Burali-Forti and Russell. In particular, Hilbert had
the hope of solving some questions in an algorithmic fashion. His famous tenth
problem in 1900, and the Entscheidungsproblem1 in 1928 are such examples.

Hence some mathematicians started to devise formal objects to try and cap-
ture the notion of algorithm. This led to the creation of µ-recursive functions,
λ-calculus and Turing machines. These three models turned out to all be equiva-
lent, i.e. whichever task one can do, any other can do as well. And since Turing
had managed to convince everyone that his concept could be mechanized, it be-
came accepted that each of these models captures exactly our informal notion of
algorithm. This statement is known today as the Church-Turing thesis, and
any model that is as powerful as one of those aforementioned is said to be Turing
complete.

From there, computability theory did not need to be tied to any particular model

1German for “decision problem”. Informally, the problem asks for an algorithm to decide
whether or not a given mathematical statement is true or false.

21

Chapter 1 Introduction

of computation, in other words, paraphrasing a famous quote: “Computability
theory is no more about computation models than astronomy is about telescopes.”
Hence, when we talk about “algorithms” or “computable functions”, the reader
should simply picture a list of instructions, written in their favorite programming
language.

Figure 1.1: From left to right: Turing, Gödel, Church, Post

1.2.2 Basic notions
In computability theory, the main objects manipulated are functions from N to N.
Intuitively, an object is computable if its most basic features can be determined
by an algorithm. For example, a function f : N → N is computable if there
is an algorithm which outputs f(n) when given n for input. A set of integers
is computable if there is an algorithm capable of deciding, whether any integer
belongs to the set or not.

Definition 1.2.1. A set A ⊆ N is computable if its characteristic function
χA is computable.

Before continuing, we describe the general notation used for computable func-
tions throughout this document. Firstly, we suppose that we have defined a bi-
jection between N and all the computer programs that take an integer as input
and possibly output an integer. Hence, we can manipulate programs with integers
called indexes and typically denoted e, i or j. From there, Φe : N → N is the
(possibly partial) function defined by the program e. If the algorithm e stops in
t ∈ N steps of computation2 or less, on the input x, then we write Φe(x)[t] ↓ and

2Informally, a computation step corresponds to an atomic unit of time. This idea can be made
precise by the formalism of Turing machines, or by the workings of an actual computer.

22

1.2 Computability theory

Φe(x)[t] is the value of the computation, otherwise we write Φe(x)[t] ↑. Moreover,
if e eventually stops on the input x, i.e. ∃t,Φe(x)[t] ↓, then we say that Φe(x)

converges and we write Φe(x) ↓. Otherwise we say that Φe(x) diverges, i.e.
∀t,Φe(x)[t] ↑, and we write Φe(x) ↑.

1.2.3 Computably enumerable sets and the halting problem
Quite quickly after defining computable sets, one can realize that there exist some
sets that are not computable. Indeed, on one hand Cantor had previously shown,
by using his famous diagonal argument, that there are uncountably many sets of
integers, i.e. card (P(N)) > card (N). On the other hand, there are only countably
many algorithms, since a computer program consists of a finite sequence of charac-
ters. This strict difference in cardinality implies the existence of non-computable
sets.

This argument is relatively simple, yet it does not provide any explicit example
of a non-computable set. The logicians of the early 20th century came up with
different algorithmic problems they showed to be undecidable. Nowadays the most
famous is the halting problem for Turing machines3: does a Turing machine
eventually stop on a given input? This problem is undecidable, i.e. no algorithm
can solve this question in its whole generality.

Definition 1.2.2. The halting set is K := {e ∈ N : Φe(e) ↓}

The choice of definition for the halting set is justified by Cantor’s diagonal argu-
ment, which is used in the proof that it is non-computable (see [Soa16, Theorem
1.6.5]).

Proposition 1.2.3. The halting set is not computable.

Even though no algorithm can solve the halting problem, it is natural to imagine
one that partially solves it. Indeed, to see if an algorithm stops or not on some
input, we can simply execute it and wait to see if it eventually stops. If it does,

3Contrary to what many people believe, this problem was not studied by Turing in his 1936
paper On Computable Numbers With an Application to the Entscheidungsproblem [Tur36].
Indeed, in this paper, Turing actually proves the undecidability of three problems: the “sat-
isfaction” problem, the “printing” problem, and the Entscheidungsproblem. For more infor-
mation see [Luc21].

23

Chapter 1 Introduction

then we can answer “yes”, otherwise we will wait forever. Hence, with enough time,
it is possible to list all the elements of the halting set: we execute more and more
algorithms in parallel4, and the ones that are in fact members of K will eventually
reveal themselves. This property is encompassed in the following definition.

Definition 1.2.4. A set A ⊆ N is computably enumerable, written c.e., if
there is an index e such that ∀n, (n ∈ A ⇐⇒ Φe(n) ↓).
Similarly to computable sets, the program e that corresponds to a c.e. set is
called c.e. code, and the set itself is denoted We.

Computable enumerability is a core notion of computability theory. Here is a
fundamental result concerning c.e. sets.

Proposition 1.2.5 (Complementation theorem). If A and A are both c.e.,
then A is computable.

For a proof see [Soa16, Theorem 2.1.14]. In particular, this proves that the
complement K of the halting set is not c.e., since K is c.e. but not computable.
We will later see that we can build sets of arbitrary complexity from the halting
problem.

1.2.4 Oracles
What if a program could somehow compute a non-computable set? What else
could be computed from there? This idea leads to the notion of oracle, i.e. a
set A ⊆ N for which a program can ask, for any integer n ∈ N, if n ∈ A or not.
Intuitively it can be seen as an infinite extra memory the program has access to. Of
course having a computable set as an oracle does not give us any more computing
power, since any access to it can be replaced by the execution of an algorithm.
But having a non-computable set as an oracle does give more computing power.
For example, having the halting set as an oracle gives the ability to know if a given
algorithm stops or not on a given input, and so decisions can be made based on
this new knowledge.

In terms of notation, the function whose code is e and that uses A as an ora-
cle is called a Turing functional or simply functional, and is written ΦA

e (or
4This is possible because Turing-complete models are not limited by memory.

24

1.2 Computability theory

sometimes Φe(A)). The set with c.e. code e and oracle A is written WA
e . More

generally, definitions and proofs that do not use oracles can be relativized, i.e.
modified so that they use oracles. For example, given an oracle A, “computable”
becomes “A-computable”, and c.e. becomes “A-c.e.”.

For any functional Φ and any oracle A, we denote by ΦA the function n 7→ ΦA(n).
Moreover, if ΦA is a total function from N to 2, then it is identified with the set
{n ∈ N : ΦA(n) ↓= 1}. The functional Φ is total if the function ΦB is total for all
set B ⊆ N.

It is also possible to use binary strings as “incomplete oracles”. The notation
remains identical, i.e. we write Φσ

e to designate the functional of code e which uses
σ ∈ 2<N as an oracle. The main difference is that, on an input n, if the program
asks the oracle about a value that is outside of its range, then the computation
diverges, i.e. Φσ

e (n) ↑. Note that if a computation stops on an oracle X ⊆ N, then
only a finite amount of it has been used. This fact is known as the use principle.
In other words

∀X, ∀e, n,
(
ΦX

e (n) ↓ ⇐⇒ ∃σ ≺ X,Φσ
e (n) ↓

)
Formally, only one oracle is allowed, but this is in fact equivalent to having

finitely many, thanks to the join operation.

Definition 1.2.6. The join of two sets A and B is the set

A⊕B := {2n : n ∈ A} ∪ {2n+ 1 : n ∈ B}

Thus, instead of two oracle A and B, we can consider a single A ⊕ B. Indeed,
it contains all the information of both A and B, since n ∈ A ⇐⇒ 2n ∈ A ⊕ B

and n ∈ B ⇐⇒ 2n+ 1 ∈ A⊕B.

1.2.5 Turing reduction and Turing jump
With oracles, we can now define new operators and relations on sets. One of them
corresponds to the relative complexity between two sets.

Definition 1.2.7. A set A ⊆ N is Turing reducible to another set B ⊆ N,
written A 6T B, if there is a program e such that ΦB

e = A.

25

Chapter 1 Introduction

Basically, if we knew how to compute B, then we could compute A. In particular,
A 6T ∅ means that A is computable, by definition. The Turing reduction is
a preorder, i.e. a reflexive and transitive relation.5 Hence we can consider the
equivalence relation generated by6T , it is called the Turing equivalence relation,
and is denoted by the symbol ≡T . The equivalent classes of this relation are called
Turing degrees, and are denoted by bold lowercase letters such as d, a, b, etc.
If the equivalence class of a set X is d, we may say “the set X of degree d”.

There is an operator on sets that generalizes the construction of the halting set.

Definition 1.2.8. The Turing jump (or simply jump) of a set A is the set

A′ :=
{
e ∈ N : ΦA

e (e) ↓
}

Remark 1.2.9. Note that for A = ∅, we obtain ∅′ = K. This new notation of
the halting set is what we use from now on.

A basic property of the jump is that it is compatible with the Turing reduction,
i.e. for any sets X and Y , if X 6T Y then X ′ 6T Y

′.
Another basic property comes from the proof of Proposition 1.2.3. It can be

relativized to prove that the jump of a set is strictly more complicated than the
set itself.

Proposition 1.2.10. For any A ⊆ N, we have A′ >T A, i.e. A′ >T A and
A′ 66T A.

Hence by taking the jump repeatedly, we get sets that are increasingly more
complicated. For this purpose, we define iterated Turing jumps.

Definition 1.2.11. The iterated Turing jumps of a set A ⊆ N are defined
recursively by

• A(0) := A

• A(n+1) :=
(
A(n)

)′
We will soon see that the iterated jumps of ∅ form the backbone of the com-

plexity hierarchy of sets.
5However it is not a partial order, because it is not antisymmetric. Indeed, the set of even

numbers and the set of odd numbers are both computable, so they can compute each other,
yet they are different.

26

1.2 Computability theory

Low sets
Regarding the Turing jump, we know that if X ⊆ N is computable, i.e. X 6T ∅,
then X ′ ≡T ∅′. It is natural to ask whether or not computable sets are the only
sets whose jump is equivalent to ∅′. This question admits a positive answer and
leads to a fundamental notion in computability theory.

Definition 1.2.12. A set X ⊆ N is low if X ′ 6T ∅′.

Note that, for any set X we have ∅ 6T X, which implies ∅′ 6T X ′. Proving
the existence of a low set can be done by using a forcing argument, see [MP22,
Proposition I.9.1].

1.2.6 The arithmetic hierarchy and Post’s theorem
There is another way of assessing the complexity of a set A ⊆ N, based on how
many quantifiers alternations are needed to define it. It is called the arithmetic
hierarchy6.

Definition 1.2.13 (Arithmetic hierarchy). Let X be an oracle and let n > 1.
We define Σ0

n(X) to be the class of sets of the form{
y ∈ N : ∃x1, ∀x2, . . . , Qxn, (y, x1, . . . , xn) ∈ R

}
where R ⊆ Nn+1 is X-computable, and Q is the symbol ∃ if n is odd, and ∀ if
n is even.
Accordingly, Π0

n(X) is the class of sets of the form{
y ∈ N : ∀x1, ∃x2, . . . , Qxn, (y, x1, . . . , xn) ∈ R

}
where R ⊆ Nn+1 is X-computable, and Q is the symbol ∃ if n is even, and ∀
if n is odd.
We also define the class ∆0

n(X) := Σ0
n(X)∩Π0

n(X). If X = ∅, then we simply
write Σ0

n, Π0
n and ∆0

n.

The halting set ∅′ is an example of Σ0
1 set, because it can be written as {e ∈ N :

∃t,Φe(e)[t] ↓}. What really counts is the alternation of quantifiers. For instance, if
6The name comes from the fact that the sets of this hierarchy correspond exactly to the sets

that are definable by a first-order formula in the language of Peano arithmetic.

27

Chapter 1 Introduction

a set can be described by a formula of the form ∃x1,∃x2, R(y, x1, x2), then x1 and
x2 can be encoded by a pair, and so there is another predicate S ⊆ N2 such that
the formula ∃x3, S(y, x3) describes the set as well. The predicate S is basically the
same as R but considers that x3 represents the pair 〈x1, x2〉.

Right away we can see that if a formula describes a Σ0
n(X) set, then its negation

corresponds to a Π0
n(X) set.

Proposition 1.2.14. Let X be an oracle. For any A ⊆ N we have

A ∈ Σ0
n(X) ⇐⇒ A ∈ Π0

n(X)

Choosing the halting set as an example earlier was not arbitrary. Indeed, there
is an important correspondence between the classes of the arithmetic hierarchy
and the iterations of the Turing jump on ∅.

Theorem 1.2.15 (Post). Let A ⊆ N and n ∈ N

A is ∅(n)-computable ⇐⇒ A is ∆0
n+1

A is ∅(n)-c.e. ⇐⇒ A is Σ0
n+1

For a proof of the theorem, see [Soa16, Theorem 4.2.2]. In particular the class
∆0

1 corresponds exactly to computable sets, the class Σ0
1 corresponds exactly to

c.e. sets, and the class ∆0
2 corresponds exactly to sets that can be computed from

∅′.
What is more, this theorem proves that the arithmetic hierarchy is strict, i.e.

for any n ∈ N, there is a set in any class Γ ∈ {Σ0
n,Π

0
n,∆

0
n} which is not in any of

the two other classes. Indeed, by using Proposition 1.2.5 we can prove that the set
∅(n) is Σ0

n but not Π0
n, and the set ∅(n) is Π0

n but not Σ0
n. Then the set ∅(n)⊕∅(n)

is a strict ∆0
n+1 set, as otherwise we could give a Σ0

n formula that characterizes the
elemebts of ∅(n), or a Π0

n formula that characterizes the elements of ∅(n).
A nice visual representation of the arithmetic hierarchy emerges from all these

properties. See Section 1.2.6.

1.2.7 Approximations and Shoenfield’s lemma
It is quite natural to approximate a given set using a sequence of sets. We are
then interested in establishing how complex such a set can be, depending on the

28

1.2 Computability theory

Σ0
1

Σ0
2

Σ0
3

Π0
1

Π0
2

Π0
3

∆0
1

∆0
2

∆0
3

...

Figure 1.2: A representation of the arithmetic hierarchy

complexity of the sequence. For the next definition recall that a set is identified
with its characteristic function.

Definition 1.2.16. A sequence of sets (An)n∈N is an approximation of a set
A ⊆ N, if ∀x,A(x) = limnAn(x).

A sequence of sets (An)n∈N is represented by a function f : N × N → N such
that ∀n, f(n, x) = An(x). In particular, if f is computable then (An)n∈N is called
a computable sequence.

Some classes of sets can be characterized in terms of approximations. This is
the case for computably enumerable sets. Indeed, if a set A ⊆ N is c.e. with code

29

Chapter 1 Introduction

e, then the sequence (A[t])t∈N is an approximation of A, where A[t] := {x ∈ N :

Φe(x)[t] ↓}. This example leads to the following definition.

Definition 1.2.17. A computable sequence of sets (An)n∈N is a c.e. approx-
imation of a set A ⊆ N, if ∀n,An ⊆ An+1 and A =

⋃
nAn.

Having a c.e. approximation is equivalent to having an approximation that starts
with the empty set, and progressively adds elements, the restriction being that an
element can never be removed.

Proposition 1.2.18. A set A ⊆ N is c.e. if and only if it has a c.e. approxi-
mation.

The class of ∆0
2 sets also possesses a characterization that is both useful and

natural.

Definition 1.2.19. A set A ⊆ N is limit computable if it has a computable
approximation.

Theorem 1.2.20 (Limit lemma, Shoenfield). The class of limit computable
sets is exactly the class of ∅′-computable sets.

1.2.8 Hyperimmunity
We now approach an important family of functions, exploiting the idea that the
computational complexity of a function is closely linked to its rate of growth.

Definition 1.2.21. A function f : N → N dominates a function g : N → N

if ∀∞x, f(x) > g(x). A function g : N → N is hyperimmune if it is not
dominated by any computable function.

Note that if f is a computable function then so is x 7→ f(x) + 1, thus a func-
tion g is hyperimmune if and only if, for any total computable function, we have
∃∞x, g(x) > f(x). So a hyperimmune function can grow relatively slowly, as long
as it has infinitely many “spikes” of high value.

30

1.2 Computability theory

x

y

computable function

hyperimmune function

Figure 1.3: Representation of a hyperimmune function

There is another notion of hyperimmunity, for infinite sets this time. The idea is
that a set A could be complex enough so that we would be unable to computably
list finite sets of integers in which there is always at least one element of A.

Definition 1.2.22. We fix a canonical listing of the finite sets (Dn)n∈N. A c.e.
array is a sequence of mutually disjoint finite sets (Df(n))n∈N where f : N → N

is a computable function. An infinite set A ⊆ N is hyperimmune if for every
c.e. array (Df(n))n∈N, there is some m ∈ N such that Df(m) ∩ A = ∅. A
Turing degree is hyperimmune if it contains a hyperimmune set, otherwise
it is hyperimmune-free.

There is a link between the two definitions of hyperimmunity that we have seen.
Basically, a set is hyperimmune if the function that corresponds to its sparcity is
hyperimmune.

Definition 1.2.23. The principal function of an infinite set A := {a0 <
a1 < . . . } is the function pA : N → N such that ∀n, pA(n) = an.

Proposition 1.2.24 (Kuznetsov, Medvedev, Uspensky [Usp63]). An infinite
set is hyperimmune if and only if its principal function is hyperimmune.

For a proof see [Soa16, Theorem 5.3.3]. This equivalence also implies that a
degree is hyperimmune-free if and only if it does not compute any function that is
hyperimmune. This is the reason why the term “computably dominated” can
also be used instead of “hyperimmune-free”.

Finally, this last result provides a simple condition to obtain hyperimmune sets.

31

Chapter 1 Introduction

Theorem 1.2.25 ([MM68, Theorem 1.2]). If a set A ⊆ N is ∆0
2 and non-

computable, i.e. ∅ <T A 6T ∅′, then it is hyperimmune.

1.2.9 Trees and Π0
1-classes

In this section, we focus our study on classes of sets, their complexity, and how
they relate to trees. We will briefly refer to topology as we discuss some aspects
of Cantor space, but no prior knowledge of this field is required here.

Cantor space

The class 2N of infinite binary sequences is called Cantor space7. There is a
correspondence between Cantor space and the unit real interval [0, 1], in the sense
that any X ∈ 2N can be associated to the real whose binary representation is
0.X0X1X2 . . ., and any real of [0, 1] has a binary representation that can be seen
as an infinite binary sequence8. Cantor space can be equipped with a topology
based on the cylinders of binary strings, i.e. the classes of the form [σ] := {X ∈
2N : X � σ} where σ is a binary string. See Figure 1.4.

0 1

[0] [110]

Figure 1.4: A representation of the cylinders [0] and [110] on the unit interval.
Informally, “0” can be thought of as “take the left half of the interval
you are in” and “1” as “take the right half of the interval you are in”.

7This is because there is a one-to-one correspondence between 2N and the famous “Cantor
ternary set”.

8Note that some reals actually have two binary representations. For example 0.1000 . . . and
0.0111 . . . correspond to the same real. This situation is analog to the well-known equality
0.999 . . . = 1.

32

1.2 Computability theory

Borel hierarchy and Lebesgue measure

An open class is an arbitrary union of cylinders, i.e. a class of the form [W] :=⋃
σ∈W [σ] where W ⊆ 2<N, and a closed class is the complement of an open class.

The collection of open classes and closed classes are respectively denoted ∼Σ
0
1 and

∼Π
0
1. They form the first level of the Borel hierarchy. A class is then ∼Σ

0
n+1 if it is

a countable union of ∼Π
0
n classes, and it is ∼Π

0
n+1 if it is a countable intersection of

∼Σ
0
n classes. A class in this hierarchy is called a Borel class.
The Lebesgue measure on the unit interval, denoted µ in this document, can be

seen as a measure on Borel classes. It is defined as the unique measure such that
µ
(
[σ]

)
= 2−|σ| for any cylinder [σ]. Carathéodory’s extension theorem ensures the

existence and uniqueness of this measure.

Effective classes

In computability theory, we are interested in an effective equivalent of these no-
tions, where effective means that at least some aspects of these objects can be
manipulated computationally. For example, cylinders are convenient to manipu-
late, because they rely on a string, which is a finite object. Open and closed classes
can also be manipulated effectively.

Definition 1.2.26. A Σ0
1-class is a class of the form [We] :=

⋃
σ∈We

[σ] where
We is a c.e. set of binary strings. And a Π0

1-class is the complement of a
Σ0

1-class. The code of a Σ0
1-class (or Π0

1-class) is the c.e. code of its underlying
set We.

The following characterization is useful to prove that some classes are Σ0
1 or Π0

1.

Proposition 1.2.27. Let C ⊆ 2N be a class.
• C is Σ0

1 if and only if it is of the form {X ∈ 2N : ∃n,X�n ∈ R}, where
R ⊆ 2<N is a computable set of strings.

• C is Π0
1 if and only if it is of the form {X ∈ 2N : ∀n,X�n ∈ R}, where

R ⊆ 2<N is a computable set of strings.

33

Chapter 1 Introduction

Trees
We now introduce the classic structure of finitely branching trees, which are closely
related to Π0

1-classes.

Definition 1.2.28. A tree is a set of strings T ⊆ k<N (for some k ∈ N) which
is downward-closed for ≺, i.e. ∀σ ∈ T, τ ≺ σ =⇒ τ ∈ T . For k = 2, such
trees are called binary trees.

The elements of a tree are generally called nodes. When two nodes α, β ∈ T

are such that α ≺ β we say that β is a successor of α, or that α is an ancestor
(or predecessor) of β. A node β is a direct successor (or child) of α if there is
n ∈ N such that β = α ·n. A node with no successor is called a leaf (or terminal
node). The set of all the leaves of a tree T is denoted `(T). A representation of
a tree is given in Figure 1.5.

100 101

100 101 10

0 1 0 1

ε ε

Figure 1.5: The left structure does not represent a tree, whereas the right one does.

Definition 1.2.29. An infinite path (or simply path, or branch) of a tree
T ⊆ k<N is an infinite sequence X ∈ kN such that ∀` ∈ N, X�` ∈ T . The
class of infinite paths of a tree T is denoted [T]. Similarly, a finite path is
a string σ ∈ k<N such that ∀` ∈ N, σ�` ∈ T . A tree with no infinite path is
well-founded.

A tree T ⊆ k<N is computable if T is computable as a set, i.e. if there is an
algorithm that can decide, for any σ ∈ kN, if σ ∈ T or not.9 Hence, the code of a
computable tree T refers to e ∈ N such that Φe = T . It turns out there is a link
between the infinite paths of computable trees and Π0

1-classes.
9To be more rigorous we should consider a bijection between strings and integers, then T can

be seen as a set of integers thanks to that bijection.

34

1.2 Computability theory

Proposition 1.2.30. A class C is Π0
1 if and only if there is a computable

binary tree T such that C = [T]

What is more, the proof of Proposition 1.2.30 (see [DM22, Proposition 2.8.7])
is in fact uniform, i.e. there is a computable procedure which, given the code of
a Π0

1-class as an input, outputs the code of a computable tree associated to it.
There is also another computable procedure that does the converse. This means
that trees and Π0

1-classes can be used interchangeably.

1.2.10 Basis theorems
Since infinite trees are structures that often arise in computability theory, it is
useful to know how complex their paths can be. Basis theorems provide some
insight regarding this question and thus are at the heart of many techniques.

Definition 1.2.31. A class C ⊆ 2N is a basis for Π0
1-classes if any non-empty

Π0
1-class contains an element of C.

In essence, basis theorems point out classes that are basis, meaning that, for
any computable tree T such that [T] is not empty, we can find an infinite path
that verifies a certain property. We now list the most famous basis theorems.

Theorem 1.2.32 (Kreisel). The class of ∆0
2 sets is a basis for Π0

1-classes.

Theorem 1.2.33 (Low basis [JS72a, Theorem 2.1]). The class of low sets is
a basis for Π0

1-classes.

Theorem 1.2.34 (Computably dominated (or hyperimmune-free) basis
[JS72a, Theorem 2.4]). The class of computably dominated sets is a basis
for Π0

1-classes.

35

Chapter 1 Introduction

Definition 1.2.35. The cone above a set X ∈ N is the class{
Y ⊆ N : Y >T X

}
Theorem 1.2.36 (Cone avoidance basis [JS72a, Theorem 2.5]). Given a non-
computable set X. The complement of the cone above X is a basis for Π0

1-
classes.

1.2.11 PA degrees
We now discuss an important family of Turing degrees, namely PA degrees, where
PA stands for Peano Arithmetic, the famous set of axioms of first-order logic that
was at the center of many preoccupations for the logicians at the beginning of the
20th century. Before going any further, we must introduce some concepts relative
to proof theory, without entering deeply into the details.

A theory is simply a set of axioms. If a formula ϕ is provable10 from a set of
axioms T , we write T ` ϕ, if it is not we write T 6` ϕ. More generally, given a
set of formulas F , we write T ` F instead of ∀ϕ ∈ F, T ` ϕ, and T 6` F instead
of ∃ϕ ∈ F, T 6` ϕ. A theory is consistent if it does not prove a contradiction,
i.e. it does not prove both a formula and its negation.11 It is called complete if,
for any formula ϕ, either T ` ϕ or T ` ¬ϕ, i.e. anything can be either proved or
disproved. A theory T ′ is a completion of another theory T if T ′ ⊇ T and T ′ is
complete.

A formula of arithmetic can be encoded by an integer, just like computer pro-
grams. It is even possible to computably enumerate all the formulas of arithmetic.
We fix such an enumeration (ϕn)n∈N, and call n the code of the formula. A theory
can then be represented as a set of integers. We are now able to give the historical
definition of PA degrees.

Definition 1.2.37. A Turing degree is PA if it contains a consistent comple-
tion of Peano arithmetic.

10A set of axioms T proves a formula ϕ if there is a sequence of formulas such that, the last
formula is ϕ, and each formula is either an axiom or can be obtained from the previous
formulas by applying a rule of inference from a given logic.

11Equivalently, since any formula can be proven from a contradiction (a principle known as “ex
falso quodlibet”), the theory must not prove all formulas.

36

1.2 Computability theory

The notion of PA degree is very robust, in the sense that it has many different
characterizations, see [Soa16, Theorem 10.3.3]. One of them in particular relates
PA degrees to non-empty Π0

1-classes.

Theorem 1.2.38 (Scott [Sco62]). A set X ⊆ N is of PA degree if and only if
it computes a set in any non-empty Π0

1-class.

There is an alternative definition for PA degrees resulting from this theorem, it
is the one that is generally used nowadays, notably because it can be relativized.

Definition 1.2.39. Let A be an oracle. A Turing degree is PA(A) if the sets
that are A-computable from it form a basis for Π0

1-classes. If a set X ⊆ N is
of PA(A) degree, we write X � A.

Finally, we present another useful characterization of PA degrees, relating them
to some other remarkable Turing degrees.

Definition 1.2.40. A function f : N → 2 is diagonally non-computable
if ∀n, f(n) 6= Φn(n). A Turing degree is DNC2 if it computes a diagonally
non-computable function.

Theorem 1.2.41 (Jockusch and Soare [Joc72a]). A set X ⊆ N is of PA degree
if and only if it is of DNC2 degree.

In particular, this theorem leads to another useful property of PA degrees re-
garding Π0

1-classes. Indeed, the class of DNC2 functions is a Π0
1-class, as it can be

written as
{f ∈ 2N : ∀e,∀t,Φe(e)[t] 6= f(e)}

where the symbol 6= is used as a shorthand for Φe(e)[t] ↑ ∨Φe(e)[t] ↓6= f(e).

Proposition 1.2.42. There exists a non-empty Π0
1-class whose members are

all of degree PA.

This fact can be used together with any basis theorem, for example to deduce
that there exists a low PA degree.

37

Chapter 1 Introduction

1.2.12 Forcing
Forcing is a powerful tool originating from set theory. It has been used with success
in computability theory and reverse mathematics, where it has become a central
tool. The apparatus necessary for forcing is much simpler in computability theory
than in set theory, hence some definitions might differ from one field to the other.

The main technical feat of forcing is the possibility to construct sets while en-
suring, during the construction, that they verify some properties. These properties
are often called requirements. Informally, to construct a set G via forcing, we
use successive approximations of that set, each extending the previous one. For
example, if G is seen as an infinite binary sequence, then it can be obtained by
constructing a sequence (pi)i∈N of binary strings such that p0 4 p1 4 . . . A given
approximation p can result in many different sets depending on how it is extended.
We denote by [p] the class of sets that are approximated by p. More formally:

Definition 1.2.43. A notion of forcing is a partial order (P,6), whose
elements are called conditions, together with a non-decreasing function [·] :
P → P(2N) called the interpretation. For any p, q ∈ P such that p 6 q, we
say that p extends q.
A filter for P is a non-empty class F ⊆ P which is upward-closed, i.e.
∀p ∈ F , ∀q ∈ P, (p 6 q =⇒ q ∈ F) and compatible i.e. ∀p, q ∈ F ,∃r ∈
F , r 6 p ∧ r 6 q.

Remark 1.2.44.
• We say that q extends p even though we write q 6 p, because [q] is

seen as a set of potential candidates for the set we are constructing,
and [q] ⊆ [p] by definition, which means that we have narrowed down
the number of potential candidates. Note that some authors use the
opposite convention and write q > p.

• In this document, we will only need to construct infinite decreasing
sequences of conditions instead of filters, and the two terms are used
interchangeably. Moreover, such a sequence (pn)n∈N induces a filter {q ∈
P : ∃n, pn 6 q}.

The example that was mentioned above is called Cohen forcing, it is the first
notion of forcing that was ever developed. In this case, P is the set of binary strings,
ρ 6 σ if and only if ρ 4 σ the prefix relation on them, and the interpretation of a
string is its cylinder.

38

1.2 Computability theory

Given a filter p0 > p1 > . . ., the definition of the interpretation yields that [p0] ⊇
[p1] ⊇ . . . So the set G that we want to construct is taken from the class

⋂
n∈N[pn].

For simpler notation, we will soon see how to make this intersection a singleton.
The big question is “how to ensure that the filter we are constructing yields the
desired properties on G?”. As a first approach, consider Cohen forcing and the
property “G contains an even number”. If a condition p corresponds to a finite
set that does contain an even number, then any extension of p will also contain
an even number, thus p is “forcing” G to contain an even number. Therefore,
given a property ϕ, we could try to build a filter that contains a condition p such
that ∀G ∈ [p], ϕ(G). However, this definition is too restrictive and fails to capture
enough properties. Indeed, suppose we constructed a filter F := p0 > p1 > . . .

of Cohen forcing such that ∀n, card
({
i < |pn| : pn(i) = 1

})
= n, and consider the

property “G is infinite”. A set resulting from F does verify this assertion, but our
naive definition fails to realize this, because, for any p ∈ F , its cylinder [p] contains
both finite and infinite sets. To unveil the right notion, we need some extra work.

Notice how, for the property “G contains an even number”, it is possible at any
point during the construction of our filter, to satisfy the formula with the next
extension.

Definition 1.2.45. A class D ⊆ P is dense in P if any condition can be
extended by an element of D, i.e. ∀p ∈ P,∃q ∈ D, q 6 p. A filter F meets a
dense class D if F ∩ D 6= ∅.

Hence the class {σ ∈ 2<N : ∃n, σ(2n) = 1} is dense for Cohen forcing. In the
example stated above, the justification of “G is infinite” can now be reformulated:
the filter F previously constructed meets the family of dense classes (Dinf

n)n∈N,
where

Dinf
n :=

{
σ ∈ 2<N : card

({
i < |σ| : σ(i) = 1

})
= n

}
This formulation leads us to the next definition.

Definition 1.2.46. Given a countable family of classes ~D := {Di}i∈N, a filter
F is ~D-generic if it meets every class of the family, i.e. ∀i ∈ N,F ∩ Di 6= ∅.

In particular, for any notion of forcing P, if a decreasing sequence of condition
F := (pn)n∈N is is generic for the family ~D := {Dn}n∈N where Dn := {p ∈ P :

∃σ ∈ 2n,∀X ∈ [p], X � σ}, then
⋂

p∈F [p] is a singleton. Indeed, for any n

there is pn ∈ F and σn ∈ 2n such that ∀X ∈ [pn], X � σn. Thus
⋂

n∈N[pn] is a
singleton whose element is entirely determined by the sequence (σn)n∈N, and since

39

Chapter 1 Introduction

⋂
p∈F [p] ⊆

⋂
n∈N[pn] we have the desired result. For simplicity, we will always

consider filters F that are generic for ~D, and denote the only element of
⋂

p∈F [p]

by GF . We can now define the forcing relation properly.

Definition 1.2.47. A condition p ∈ P forces a property ϕ, i.e. an arithmeti-
cal formula with a free second-order variable G, denoted p
 ϕ(G), if there is
a countable family of dense classes ~D such that, for all ~D-generic filter F , if
p ∈ F then ϕ(GF) holds.

Remark 1.2.48. We may sometimes talk about sufficiently generic filters to
signify that such a filter will be determined a posteriori, once the family of
dense classes for which it must be generic are fully known. The existence of
such a filter will be guaranteed by Theorem 1.2.49.

The definition given here is referred to as the semantic definition of forcing, it
is relatively simple to define and work with, but it quantifies over high-order objects
such as families of dense classes and filters. Fortunately, there is a syntactic
definition of forcing as well, much simpler in terms of complexity as it is based
on induction, and which corresponds exactly to the semantic one. The details of
this definition can be found in [DHR20, Definition 7.4.1].

The soundness of Definition 1.2.47 is assessed by the following facts. Firstly, as
expected, if p
 ϕ(G) and q 6 p, then q
 ϕ(G). Secondly, the class

{
p ∈ P : (p

ϕ(G))∨(p
 ¬ϕ(G))
}

is dense, meaning that we can always find an extension that
decides a given property. In particular, for a sufficiently generic filter F , ϕ(GF)

holds if and only if ∃p, p
 ϕ(G). Thirdly, the following theorem ensures that, for
any countable family of dense classes, we can carry out the construction of our
generic filter. The idea of the proof is that, since there are countably many classes,
and they are all dense, we can build a filter that meets them one by one.

Theorem 1.2.49 (Rasiowa and Sikorski). For any notion of forcing P, any
condition p, and any countable family of dense class ~D, there exists a ~D-generic
filter containing p.

Finally, we define a notion of forcing, called Mathias forcing, that is par-
ticularly well-suited for studying Ramsey’s theorem. Many ulterior notions are
refinements of Mathias forcing, where extra properties or objects are added to the
condition.

40

1.3 Reverse mathematics

Definition 1.2.50 ([Mat77]). A Mathias condition is a pair (σ,X) where
• σ is a binary string (identified with a finite set)
• X ∈ 2N is an infinite set, called the reservoir
• X ∩ J0, |σ|J= ∅

A Mathias condition (τ, Y) extends another (σ,X), if Y ⊆ X and τ < σ

where τ − σ ⊂ X. The interpretation of a Mathias condition is given by[
(σ,X)

]
:= {Z ∈ [σ] : Z ⊆ σ ∪X}.

1.3 Reverse mathematics

1.3.1 Overview

Reverse mathematics is a foundational program started in 1974 by Harvey Fried-
man [Fri74]. The original goal was to answer the following question: “What are
the weakest axioms required to prove a given theorem?”. More generally, reverse
mathematics provide a framework in which the tools of computability theory and
proof theory are used to assess the constructive content of theorems, and how they
interact with one another. Chasing these objectives also often leads to finding new
proofs of known theorems, usually simpler in terms of axiomatic complexity. For
more information on the subject see [Sim09], [MP22] or [DM22].

1.3.2 Second-order arithmetic

The formal framework used by reverse mathematics is second-order arithmetic.
This choice is motivated by the fact that arithmetic and computability theory both
deal with natural numbers at their core, and that a relevant chunk of mathematics
can be expressed in second-order arithmetic. We shall call this chunk “ordinary”
mathematics, as opposed to “set-theoretic” mathematics. For example, continuous
function from R to R can be encoded by sets of integers, because continuous
functions are entirely determined by their action on open sets, and R possesses
a countable basis of open sets. More examples can be found in Grundlagen der
Mathematik [HB11] or in Simpson’s book Subsystems of second order arithmetic
[Sim09]. We now dive into more formal definitions.

The language of second-order arithmetic is composed of first-order variables that

41

Chapter 1 Introduction

represent natural numbers, and are denoted by lowercase letters like x, y, z. It also
contains second-order variables that represent sets of natural numbers, and are
denoted by uppercase letters like X,Y, Z. There are also all the necessary logical
and arithmetical symbols: parenthesis, ∧,∨, =⇒ ,¬,∀,∃,+,×,=, <, 0, 1. Finally,
there is the set-theoretic symbol ∈. Formulas are formed from this language in
the same way as in first-order logic, the only difference is that quantification can
occur on second-order variables as well. The theory of second-order arithmetic,
written Z2, is composed of Robinson’s arithmetic axioms, denoted by Q.

∀x, x+ 1 6= 0 ∀x, (x 6= 0 =⇒ ∃y, x = y + 1)

∀x,∀y, (x+ 1 = y + 1 =⇒ x = y) ∀x, x+ 0 = x

∀x,∀y, x+ (y + 1) = (x+ y) + 1 ∀x, x× 0 = 0

∀x,∀y, x× (y + 1) = (x× y) + x ∀x, ∀y,
(
x < y ⇐⇒ ∃z, (z 6= 0 ∧ y = x+ z)

)
Plus the comprehension scheme,

∃X, ∀y, (y ∈ X ⇐⇒ ϕ(y))

for any formula ϕ. And finally, the induction scheme

ϕ(0) ∧
((

∀x, (ϕ(x) =⇒ ϕ(x+ 1))
)

=⇒ ∀x, ϕ(x)
)

1.3.3 Models
Henkin models
A Henkin model of second-order arithmetic is a mathematical structure of the
form 〈N,S〉, where S ⊆ P(N), along with an interpretation of the symbols in
the language of second-order arithmetic. The set N and the class S respectively
correspond to the integers and the sets of integers in the model. So they are
respectively called first-order part and second-order part of the model. The
interpretation consists of defining the symbols of second-order arithmetic on N

and S. So two distinguished elements of N correspond to the symbols 0 and 1,
there are two functions from N ×N to N that correspond to the symbols + and
×, and there is a binary relation on N that corresponds to the symbol <. As for
the symbols ∈ and =, they are interpreted in the usual way.

If a formula is true in a model, then we say that the model satisfies the formula.
This definition extends to theories, a model satisfies a theory if all the axioms of
the theory are satisfied by the model. Hence the intended model of the theory Z2

is 〈N,P(N)〉, where the symbols have their usual interpretation.

42

1.3 Reverse mathematics

Full models

Among Henkin models, those whose second-order part is exactly P(N) are called
full models. It could seem natural to work only with full models, however, some
essential theorems would not hold anymore in that case, e.g. Gödel’s completeness
theorem, compactness theorem, and Löwenheim-Skolem theorem. Informally, this
is because second-order quantification behaves quite differently when it can range
over all possible subsets of N .

Moreover, Dedekind’s categoricity theorem states that there is only one full
model of second-order arithmetic up to isomorphism. Thus, since the theorems we
are going to consider are provable in second-order arithmetic, they will be true in
every full model, making us unable to prove separation results.

Non-standard models

In first-order logic, there exist models of Peano arithmetic in which there are
integers that are not in the set ω := {0, 1, 1 + 1, . . . }. Such integers are said to be
non-standard, and the model itself is called non-standard.

One distinctive feature of such integers, making them “infinite” in a sense, is
that they are larger than any standard integer. Because of this, some very intuitive
properties are actually false in non-standard models. For example, a finite union
of finite sets is not necessarily finite. Indeed, first recall that “X ⊆ N is infinite”
is shorthand for ∃∞x, x ∈ X, and consider k many finite sets {Fi}i<k. For each of
them there is a threshold yi ∈ N such that ∀x > yi, x /∈ Fi, and we wish to find
y ∈ N such that ∀x > y, ∀i < k, x /∈ Fi. If k is a standard integer, we can simply
consider the threshold y := max{yi : i < k} to be done. This holds even if y is
non-standard, because what matters is that

⋃
i<k Fi is finite from the perspective

of the model considered. However, if k is non-standard, then taking the maximum
of the yi (or simply finding an upper bound) is not necessarily possible.

Definition 1.3.1. A model of second-order arithmetic is an ω-model if its
first-order part is the set ω of standard integers.

43

Chapter 1 Introduction

1.3.4 RCA0

The idea of reverse mathematics is to work above a robust base theory that is as
simple as possible while being able to prove theorems of low complexity. The name
of this theory is RCA0, for Recursive Comprehension Axiom, and intuitively it cap-
tures computable mathematics. Its axioms are the same as Z2, but the comprehen-
sion scheme is restricted to ∆0

1 formulas12, and the induction scheme is restricted
to Σ0

1 formulas. By Theorem 1.2.15, the sets defined in this fashion must be com-
putable, hence the name of the theory. The choice of restriction for the induction
scheme can seem more arbitrary, but it is equivalent over Q+∆0

1-induction to the
assertion that a function can be iterated finitely many times13, which is a rather
tame assumption that nonetheless allows RCA0 to prove a reasonable amount of
statements.

Thanks to RCA0 we can now compare the strength of theorems. To do so we
use the implication over RCA0, i.e. RCA0 ` P =⇒ Q, which can be interpreted as
“theorem P is at least as strong as theorem Q”. Observe that, by the completeness
theorem, this implication is equivalent to “any model of RCA0 + P is a model of
RCA0 + Q.

Turing ideals
An ω-model is entirely determined by its second-order part. In the case of RCA0,
the second-order part of its ω-models have a nice characterization in terms of
Turing ideals.

Definition 1.3.2. A Turing ideal is a non-empty class I ⊆ 2N which is
• closed under Turing reduction, i.e. ∀X ∈ I,∀Y ⊆ N, Y 6T X ⇒ Y ∈ I
• closed under the join operation, i.e. ∀X,Y ∈ I, X ⊕ Y ∈ I

As the name suggests, they form an order ideal for the Turing reduction 6T .

Proposition 1.3.3 (Friedman [Fri74]). An ω-model satisfies RCA0 if and only
if its second-order part is a Turing ideal.

12The notion of ∆0
1 formula is not syntactic. So to formally write the comprehension scheme

for ∆0
1 formulas, it needs to be modified in the following way: for each Σ0

1 formula ϕ and Π0
1

formula ψ, we have the axiom
(
∀x, (ϕ(x) ⇐⇒ ψ(x))

)
=⇒ ∃X, ∀y, (y ∈ X ⇐⇒ ϕ(y))

13This statement is called PREC, see [HS07, Proposition 6.6] for more information on the equiv-
alence discussed here.

44

1.3 Reverse mathematics

We denote by COMP the ω-model of RCA0 whose second-order part is the
class of all computable sets. It is the smallest model of RCA0 for inclusion, see
[Sim09, Corollary II.1.8]. This further supports the idea that RCA0 corresponds
to “computable mathematics”.

1.3.5 The Big Five
The early study of reverse mathematics revealed four subsystems of second-order
arithmetic, linearly (and strictly) ordered by the provability relation over RCA0.
Together they are called the “Big Five”, and they possess a remarkable empirical
property: most theorems of “ordinary” mathematics are either provable in RCA0,
or equivalent over RCA0 to one of the four other subsystems. And so, the burning
question is of course

Question 1. Is there any “ordinary” theorem that escapes this phenomenon?

The answer to this question turned out to be positive, and Ramsey’s theorem
became the first example of a statement escaping the Big Five. More details are
given in Section 1.3.8, but before this, we present the subsystems of the Big Five
that are relevant to this document.

The subsystem WKL0

The first subsystem above RCA0 is WKL0, it is composed of the axioms of RCA0,
plus an extra statement called weak König’s lemma.

Statement 1.3.4 (Weak König’s Lemma). Every infinite binary tree T has
an infinite path, i.e. [T] 6= ∅.

The formalization of this statement in second-order arithmetic is written WKL.
While it seems to be trivial, it is in fact not provable in RCA0 (see [Sim09, Example
I.8.8]), because there is an infinite binary tree which is computable, but whose
paths are all non-computable. The statement WKL is notably equivalent to the
Heine-Borel theorem on the closed unit real interval14 (see [Sim09, §IV.1]), for this
reason it is said to capture the notion of compactness.
14The theorem states that every covering of the closed unit interval [0, 1] by a sequence of open

intervals has a finite subcovering.

45

Chapter 1 Introduction

There is an equivalent to Turing ideals for WKL0, named Scott ideals. Recall
from Definition 1.2.39 that X � A means X is of PA(A) degree.

Definition 1.3.5. A Scott ideal is a Turing ideal I ⊆ 2N that is closed for
WKL, i.e. for any infinite tree, computable by some element of I, there is an
infinite path in I. Equivalently, a Scott ideal is a Turing ideal I ⊆ 2N such
that, ∀X ∈ I,∃Y ∈ I, Y � X.

Unlike RCA0, the theory WKL0 does not have a smallest ω-model. In particular,
the intersection between all the ω-models of WKL0 is the class of computable sets,
which is not a model of WKL0. See [Sim09, VIII.2] for more details.

The subsystem ACA0

The subsystem ACA0 has the same axioms as RCA0, but the comprehension axiom
scheme is not restricted to ∆0

1 formulas anymore, it can be applied to any arithmeti-
cal formula, hence its name “Arithmetic Comprehension Axiom”. It is equivalent
over RCA0 to the statement “every set has a Turing jump” (see [DM22, Corollary
5.6.3]), this characterization is useful to keep in mind in practice. Besides, it gives
us an equivalent to Turing ideals for the theory.

Definition 1.3.6. A jump ideal is a Turing ideal I ⊆ 2N which is closed for
the jump operator, i.e. ∀X, (X ∈ I =⇒ X ′ ∈ I).

Like RCA0, the theory ACA0 also has a smallest ω-model, namely

ARITH := {X ⊆ N : ∃n,X 6T ∅(n)}

The other two subsystems
There are two subsystems left to complete our picture of the Big Five hierarchy,
see Figure 1.6. Directly above ACA0 is the subsystem ATR0, and above the latter is
Π1

1-CA. We will not go into more detail regarding them, as the statements studied
in the present document are all provable in ACA0. For more information about the
Big Five, and in particular, these last two subsystems see [Sim09] or [Hir15].

46

1.3 Reverse mathematics

Π1
1 − CA

ATR0

ACA0

WKL0

RCA0

Figure 1.6: The Big Five. An arrow represents the provability relation, modulo
RCA0.

1.3.6 Problems and reducibilities

In reverse mathematics, many theorems can be seen as problems, with instances
and solutions. For example WKL can be seen as a problem whose instances are
infinite binary trees, and the solutions of an instance are its infinite paths. More
formally, a problem is a Π1

2 formula of the form ∀X
(
Φ(X) =⇒ ∃Y,Ψ(X,Y)

)
,

where Φ and Ψ are both arithmetical formulas. Thus, an instance is a set X such
that Φ(X), and a solution to X is a set Y such that Ψ(X,Y). We can write I ∈ P

to signify that I is an instance of the problem P.

Seeing theorems in this fashion offers new ways of studying their relative strength,
much alike many-one reducibility in computability theory, instead of just the proof-
theoretic implication over RCA0. These reductions make precise the idea of solving
a problem by using our ability to solve another. They all are transitive relations,
and Figure 1.7 shows how they relate to one another.

47

Chapter 1 Introduction

Definition 1.3.7. Let P and Q be two problems.
• P is computably reducible to Q, written P 6c Q, if every instance I

of P computes an instance Î of Q such that, for any solution Ŝ to Î, we
have I ⊕ Ŝ computes a solution to I.

• P is strongly computably reducible to Q, written P 6sc Q, if every
instance I of P computes an instance Î of Q such that any solution to Î
computes a solution to I.

• P is strongly omnisciently computably reducible to Q, written
P 6soc Q, if for every instance I of P, there is an instance Î of Q such
that any solution to Î computes a solution to I.

• P is Weihrauch reducible to Q, written P 6W Q, if there are Turing
functionals Φ and Ψ such that for every instance I of P, we have that
ΦI is an instance of Q, and for any solution Ŝ to ΦI we have that ΨI⊕Ŝ

is a solution to I.
• P is strongly Weihrauch reducible to Q, written P 6sW Q, if there

are Turing functionals Φ and Ψ such that for every instance I of P, we
have that ΦI is an instance of Q, and for any solution Ŝ to ΦI we have
that ΨŜ is a solution to I.

Recall that, for a functional Φ and an oracle A, we denote ΦA the function n 7→ ΦA(n).

6sW

6sc 6W

6soc 6c

Figure 1.7: Implications between the different reductions. An arrow6a→6b means
that 6a⊂6b, only the implications that hold are represented.

This computability-theoretic approach is related to the proof-theoretic one that
we have seen so far. Indeed, if P 6 Q for any of the above reduction, then every
ω-model of Q is an ω-model of P. Also, when restricting ourselves to ω-models,
then the implication over RCA0 is a generalization of the computable reduction, in
which it is allowed to have multiple successive applications of the theorem. From
this viewpoint, computable reducibility is “resource-sensitive”. Besides, Weihrauch

48

1.3 Reverse mathematics

reducibility is a uniform version of it, and omniscient reduction is a version where
no effectiveness is imposed on the complexity of the instance Î of Q.

Each approach has its own interest, as they all reveal different aspects of the
relation between two theorems.

1.3.7 Separation and preservation
Separating two problems P and Q, i.e. proving that RCA0 6` P =⇒ Q, usually
consists of expliciting a model M in which P holds but Q does not, i.e. any instance
of P in M has a solution in M, but there is an instance of Q in M that has no
solution in M. Crafting such a model can prove to be a difficult task, but the
notion of preservation can simplify this approach. In particular, it has successfully
been used to solve many open questions in reverse mathematics.

Definition 1.3.8. A weakness property is a class W ⊆ P(N) downward-
closed for Turing reduction, i.e. if X ∈ W and Y 6T X then Y ∈ W .
Given a weakness property W . A problem P preserves W if, for all Z ∈ W ,
any Z-computable instance X of P admits a solution Y such that Z⊕Y ∈ W .
Moreover, a problem P strongly preserves W if any instance X of P admits
a solution Y ∈ W .

Classic examples of weakness properties are:
• the class of low sets
• the class of computably dominated sets
• cone avoidance (the complement of the cone above some non-computable

set)
• the class of arithmetical sets

Proposition 1.3.9. If a problem Q preserves a weakness property W, and
P does not, then there is a model of P which is not a model of Q. Thus
RCA0 6` P =⇒ Q.

For a proof of this claim see [MP22, Corollaire 24.1.12].
The basis theorems we have seen in Section 1.2.10 can be rephrased in terms of

preservation. Hence, WKL preserves lowness, computable domination, and cone
avoidance. Indeed, for the case of lowness, let Z be a low set, and let T be an
infinite Z-computable binary tree. By the low basis theorem relativized to Z, there

49

Chapter 1 Introduction

is P ∈ [T] such that (Z ⊕ P)′ 6T Z ′. Since Z is low, i.e. Z ′ 6T ∅′, then Z ⊕ P

is also low, and so WKL preserves lowness. The proof for the other properties is
similar.

1.3.8 Ramsey’s theorem
This section offers a short historical survey on Ramsey’s theorem in reverse mathe-
matics, a result in combinatorics which received a particular interest, as it provided
the first example of a “natural” statement escaping the big five phenomenon, and
consequently fostered the development of different techniques in the field. We
shall present the theorem itself and the main results related to its study, many
have been reformulated to fit with current notations. Good references on the
subject are [Hir15], [MP22] and [DM22].

1928: Ramsey’s initial statement
In 1928, the 25-year-old mathematician Frank Ramsey published a paper titled
On a problem of formal logic [Ram30]. According to the abstract, he was “primar-
ily concerned with a special case of one of the leading problems of mathematical
logic” (the Entscheidungsproblem), but by doing so, he stumbled upon some com-
binatorial theorems which were interesting on their own. The theorem he labeled
A is what we now call Ramsey’s theorem.15

Before being able to state Ramsey’s theorem, we need some notation and defi-
nitions.

Notation 1.3.10. Given a set X ⊆ N and any integer n, we define

[X]n := {F ⊆ X : card (F) = n}

The set [X]n is in one-to-one correspondence with the set {(x0, . . . , xn−1) ∈ Xn :

x0 < . . . < xn−1}. Hence, its elements are referred to as “the n-tuples of X”, or
simply “the n-tuples” if X = N.
15To be more precise, Ramsey proved three theorems, labeled A, B, and C. Theorem B is

actually what is generally referred to as Ramsey’s theorem nowadays, and theorem C is just
an equivalent form of theorem B. Theorem A is an infinite version of theorem B, which is
why it is the preferred version in areas such as set theory and reverse mathematics.

50

1.3 Reverse mathematics

Figure 1.8: Frank Plumpton Ramsey

Definition 1.3.11. Given a set X, and two integers n and k, a k-coloring
of the n-tuples is a function from [X]n to {0, . . . , k − 1}.

We simply say “coloring” when the values of n and k can be inferred or are
irrelevant. Furthermore, we write f(x0, . . . , xn−1) instead of f({x0, . . . , xn−1}) and
assume x0 < . . . < xn−1.

Definition 1.3.12. Given a coloring f : [X]n → k, a set H ⊆ X is f-
homogeneous if f is constant on [H]n, i.e. card

(
f
(
[H]n

))
= 1.

Finally, we can state the theorem.

Statement 1.3.13 (Ramsey’s theorem (RTn
k)). For all coloring f : [N]n → k,

there exists an infinite f -homogeneous set.

The formalization of this statement in second-order arithmetic is written RTn
k .

To see proofs of this theorem, the author recommends [Hir15, Section 6.1].
For n = 1, Ramsey’s theorem corresponds to the infinite pigeonhole principle,

i.e. if infinitely many objects are colored in finitely many colors, then there is a
color that corresponds to infinitely many objects. For n > 1, the structure of a
coloring is more complicated, and Ramsey’s theorem can be seen as a way to find
some regularity in any structure that is big enough.

51

Chapter 1 Introduction

Folklore
In computability theory, some properties of Ramsey’s theorem were probably well
known and part of the folklore, we begin by reviewing them.

Computationally speaking, RT1
k is quite weak, as any computable instance has a

computable solution. Indeed, an algorithm can simply consider a color it believes
is used infinitely many times, and then select all the elements of that color, in
order to build an infinite homogeneous set. Throughout the k different algorithms
possible, there is at least one that gives the correct answer. In other words:

Proposition 1.3.14. For any k ∈ N, RCA0 ` RT1
k

Another property is that, the bigger the value of n, the more difficult it is to
solve RTn

k , in other words, instances of RTn
k are easier to solve than instances of

RTn+1
k , i.e.

Proposition 1.3.15. For all n, k ∈ N, RCA0 ` RTn+1
k =⇒ RTn

k

Proof. We can encode a given coloring f : [N]n → k into a coloring f̃ : [N]n+1 → k

with a dummy variable, i.e.

f̃ : x0 < . . . < xn 7→ f(x0, . . . , xn−1)

By RTn+1
k there is an infinite f̃ -homogeneous set H ⊆ N, and by definition of f̃ it

is also f -homogeneous.

Finally, we can restrict our study to 2-colorings, instead of k-colorings for k > 2,
without any loss of generality, because instances of RTn

k+1 can be solved by using
multiple instances of RTn

k . This is called a color-blindness argument, and it
requires the following lemma. In essence, it shows that it is equivalent to use any
infinite set X ⊆ N instead of N, in the statement of Ramsey’s theorem.

Lemma 1.3.16. Let P be the statement “for any infinite set X ⊆ N, and
for any coloring f : [X]n → k, there is an infinite f -homogeneous set”. Then
RCA0 ` RTn

k =⇒ P .

Proof. Let X := {x0 < x1 < . . . } be an infinite set and f : [X]n → k be an
instance of P . By Σ0

1 induction, define the bijection h : n 7→ xn between N and X.
Then, by RTn

k , there is an infinite set H ⊆ N that is homogeneous for the coloring
f̃ : a0, . . . an−1 7→ f(h(a0), . . . , h(an−1)). Finally, the infinite set {g(a) : a ∈ H} is
∆0

1 and homogeneous of f .

52

1.3 Reverse mathematics

Proposition 1.3.17. For all k > 1, RCA0 ` RTn
2 =⇒ RTn

k+1

Proof. We proceed by induction on k, for k = 1 the result is trivial. Given f :

[N]n → k + 1 consider

f̂ : [N]n → k

~x 7→

{
k − 1 if f(~x) = k

f(~x) otherwise

Then, by induction hypothesis, there is an infinite set H ⊆ N homogeneous for f̂ .
If the color is not k, then it is also f -homogeneous. Otherwise, consider f�[H]n , it
is a 2-coloring, and by the previous lemma, there is an infinite homogeneous set
G, from which we can deduce an infinite f -homogeneous set.

1966: First steps in computability theory with Specker
The study of Ramsey’s theorem from a computational point of view started in the
mid-’60s, before the existence of reverse mathematics. The first natural question
to ask is probably the following:

Question 2. Does a computable instance of RTn
k always have a computable

solution?

We have already seen the answer for the case n = 1. A negative answer for the
case n > 2 was brought by Specker. He constructed a computable instance of
RT2

2 with no c.e. solution.

Proposition 1.3.18 (Specker). If n > 2 and k > 2, then RCA0 6` RTn
k .

This result was published in 1971 in a paper titled Ramsey’s theorem does not
hold in recursive set theory [Spe71], but was presented during a talk in Manchester
as early as 1966 (see footnote in Specker’s paper).

1972: Jockusch’s first results
After Specker’s result, the next natural question to ask is

53

Chapter 1 Introduction

Question 3. How complex can a solution to a computable instance of RTn
k be?

In 1972, Jockusch answered the question when he published the first paper
in which Ramsey’s theorem was being thoroughly investigated, titled Ramsey’s
Theorem and Recursion Theory [Joc72b]. He established optimal bounds on the
complexity of solutions for computable instances of RTn

k , for n > 2.

Theorem 1.3.19 (Jockusch [Joc72b, Theorem 5.1 and 5.5]). Let n > 2 and
k > 1. There is a computable instance of RTn

2 with no Σ0
n solution. Every

computable instance of RTn
k admits a Π0

n solution.

Corollary 1.3.20. For all n, k ∈ N, ACA0 ` RTn
k

Moreover, he proved that RT3
2 has an instance such that any of its solutions

computes ∅′ [Joc72b, Theorem 5.7]. This result allows for the construction of a
jump ideal, and leads to the following result, by starting from a countable model
and then adding a solution to any instance of RT3

2 in the model.

Theorem 1.3.21 (Jockusch). For all n > 3 and all k > 2, RCA0 ` RTn
k ⇐⇒

ACA0

In addition to these results, Jockusch published the same year, with Soare,
another paper titled Π0

1 classes and degrees of theories [JS72a], in which they
proved the low basis theorem. With that extra tool, it becomes possible to prove
the following.

Theorem 1.3.22. WKL0 6` RT2
2

Indeed, we can construct a model of WKL0 which is not a model of RT2
2, i.e. in

the model there is an instance of RT2
2 that has no solution in the model. On one

hand, by the low basis theorem it is possible to construct a model with only low
solutions. To do so, consider a countable model of RCA0. For any instance of WKL

in the model, there is an infinite low path by the low basis theorem. This path
is added to the model along with all the sets computable from it, so the model
remains downward closed for Turing reduction. This procedure can be repeated
for every instance of WKL in the model, since the latter is countable. On the other
hand, by Jockusch’s theorem, there is a computable instance of RTn

2 with no Σ0
n

54

1.3 Reverse mathematics

solution, in particular, using Post’s theorem, it has no ∅′-computable solution,
this means that no low set can compute any solution.

So only the case n = 2 remains open to finish the study of Ramsey’s theorem,
with one big question.

Question 4. Does RT2
2 imply ACA0 above RCA0?

Answer in Theorem 1.3.27.

1987: Hirst’s thesis and the bounding principle
In his thesis [Hir87, Chapter 6], Hirst proved some interesting results regarding
Ramsey’s theorem, notably some related to the bounding principle.

Statement 1.3.23 (Bounding principle).

∀a,
(
(∀x < a, ∃y, ϕ(x, y) =⇒ ∃b,∀x < a, ∃y < b, ϕ(x, y)

)
where ϕ is a formula.

In particular, if ϕ is a function, then the statement can be interpreted as “the
image of a bounded set by a function is bounded”. The formalization of the
bounding principle in second-order arithmetic is denoted BΓ, where Γ is a class
of formulas from which ϕ is taken. What makes this statement non-obvious is
the fact that a can be a non-standard integer, in which case finding a suitable
b that bounds the values of y becomes more difficult than in the standard case.
In particular, the statement BΣ0

2 is often encountered in reverse mathematics.16

Firstly because there is a link between the induction scheme and the bounding
scheme. Namely, for any n ∈ N, IΣ0

n+1 =⇒ BΣ0
n+1 =⇒ IΣ0

n, see [PK78, Theorem
A]. Secondly, because it is linked to Ramsey’s theorem in the following way.

Notation 1.3.24. For any n, let RTn
<∞ (sometimes simply written RTn) de-

note the statement ∀k,RTn
k .

16Note that BΣ0
2 is equivalent to BΠ0

1. Indeed, the existential quantification in the Σ0
2 formula

can be merged with the existential quantification in the bounding principle. More generally,
BΣ0

n+1 is equivalent to BΠ0
n, for any n > 1.

55

Chapter 1 Introduction

Proposition 1.3.25 ([Hir87, Theorem 6.4]). RCA0 ` RT1
<∞ ⇐⇒ BΣ0

2

This characterization is used by Hirst to show that RT1
<∞ cannot be proven in

RCA0 nor WKL0, see [PK78, Corollary 6.5]. Ultimately leading to a new proof that
WKL0 6` RT2

2 based on the following fact.

Proposition 1.3.26 ([PK78, Theorem 6.8]). RCA0 ` RT2
2 =⇒ RT1

<∞

1995: Seetapun’s theorem
An answer to Question 4 came in 1995, when Seetapun, who was a student of
Slaman at the time, proved the following result in their paper On the strength of
Ramsey’s theorem [SS95, Theorem 3.1].

Theorem 1.3.27 (Seetapun). WKL0 + RT2
2 6` ACA0

To prove this, Seetapun constructed a model of WKL0 (more precisely, a count-
able ω-model, whose second-order part is a Scott ideal S), which is a model of RT2

2

but not a model of ACA0, i.e. every instance of RT2
2 in S has a solution in S, but

there is a set Z ∈ S whose jump Z ′ is not in S. To achieve this, it is necessary to
have the following result called cone avoidance of RT2

2.

Theorem 1.3.28 (Seetapun [SS95, Theorem 2.1]). Let Z ⊆ N. For any Z-
computable coloring f : [N]2 → 2, if (Ci)i∈N is a sequence of sets such that
∀i, Ci 66T Z, then there is an infinite f -homogeneous set H ⊆ N such that
∀i, Ci 66T H.

From there, to prove Theorem 1.3.27, first consider COMP. It is a model of
RCA0 that contains ∅ but not its jump ∅′. Then consider some instance of RT2

2

in the model. By using Theorem 1.3.28, there is a solution H that avoids the
cone above ∅′. This solution is added to the model, and to ensure the model is
downward closed for 6T , we add all the sets that are H-computable. Due to the
property of H, we know ∅′ has not been added at this step. Finally, since the
model considered is countable, this procedure can be done for all the instances of
RT2

2 in the model.
So RT2

2 is strictly below ACA0, the remaining big question now becomes

56

1.3 Reverse mathematics

Question 5. Does RT2
2 imply WKL over RCA0?

Answer in Theorem 1.3.40.

2001: CJS paper and the SRT2
2 + COH decomposition

After the publication of [SS95], Cholak, Jockusch and Slaman decided to in-
vestigate the remaining question. This resulted in a paper titled On the strength
of Ramsey’s theorem for pairs [CJS01], colloquially known after the authors ini-
tials “CJS”, published in 2001, and containing numerous results regarding RT2

2,
many of which were probably shared with the community before publication. It
also shaped the future studies of RT2

2 by asking questions and proposing different
approaches.

A notable contribution of the paper (see §7) was the decomposition of RT2
2 in

two separate statements. The first statement is called COH and corresponds to
a property called cohesiveness. It can be seen as a sequential version of RT1

2,
indeed it says that for every infinite sequence of 2-colorings of the integers, there
is an infinite set that is almost homogeneous for all the colorings.

Definition 1.3.29. A set A is almost included in a set B, denoted A ⊆∗ B,
if B − A is finite, in other words ∀∞x ∈ A, x ∈ B. Given an infinite sequence
of sets ~R, a set C is ~R-cohesive if, for any i ∈ N, either C ⊆∗ Ri or C ⊆∗ Ri.

Statement 1.3.30 (COH). For any infinite sequence of sets ~R, there is an
infinite ~R-cohesive set.

This statement is especially useful because it creates a bridge between com-
putable instances of RT2

k and ∆0
2 instances of RT1

k. Indeed, consider a computable
coloring f : [N]2 → k and define the sequence of sets ~R := (Rx,i)x∈N,i<k, where
Rx,i := {y ∈ N : f(x, y) = i}. If C is an infinite ~R-cohesive set, then limy∈C f(x, y)

exists for all x ∈ C. Thus we can define the coloring g : C → k such that
g(x) := limy∈C f(x, y). It is (C ⊕ f)′-computable because, for any x ∈ C, we
can search for a threshold s ∈ N and a color i < k by using the halting set to
know whether or not ∀y > s ∈ C, f(x, y) = i. Since the limit of f exists, we
are guaranteed to find s and i, in which case we then define g(x) := i. For any
Y ⊆ C solution to g, we have that Y ⊕ f computes a solution to f . Indeed, we

57

Chapter 1 Introduction

can proceed by induction. First define x0 := minY . Then, suppose {x0, . . . , xn−1}
is f -homogeneous for the color i < k, and define xn to be the smallest element of
Y that is larger than xn−1 and such that ∀j < n, f(xj, xn) = i.

The second statement is a restriction of Ramsey’s theorem for stable colorings.

Definition 1.3.31. For any n, a coloring f : [N]n+1 → k is stable if, for every
~x ∈ [N]n, limy f(~x, y) exists, i.e. ∀~x ∈ [N]n,∃i < k, ∀∞y, f(~x, y) = i.

Statement 1.3.32. (Stable Ramsey’s theorem SRTn
k) For any stable coloring

f : [N]n → k, there is an infinite f -homogeneous set.

Hence the decomposition of RT2
2 can be formally written as follows.17

Proposition 1.3.33 ([CJS01, Lemma 7.11], [Mil04, Appendix A]).
RCA0 ` RT2

2 ⇐⇒
(
SRT2

2 + COH
)

Naturally, the question arising from this fact is “Is SRT2
2 +COH a strict decom-

position of RT2
2?”. More precisely:

Question 6. Does RCA0 ` COH =⇒ RT2
2 hold?

Answer in Theorem 1.3.39.

Question 7. Does RCA0 ` SRT2
2 =⇒ RT2

2 hold?

Partial answer in Section 1.3.8, completed by Section 1.3.8.

A first approach proposed in [CJS01, Question 13.9] to solve Question 7 relies
on another question.

Question 8. Does every computable instance of SRT2
2 have a low solution?

If the answer is yes, a similar argument as the one used for Theorem 1.3.22
would prove that RCA0 6` SRT2

2 =⇒ RT2
2. That is to say, on one hand it would

17The proof of RT2
2 =⇒ COH proposed in [CJS01] turned out to be erroneous, indeed it

unknowingly used IΣ0
2, which is not provable in RCA0. Mileti later provided a corrected proof

in his PhD thesis.

58

1.3 Reverse mathematics

be possible to make a model M of SRT2
2 with only low solutions, and on the other

hand there is an instance of RT2
2 with no ∆0

2 solution, meaning that M is not a
model of RT2

2. Unfortunately, a negative answer to that question was brought by
Downey, Hirschfeldt, Lempp and Solomon in their 2001 article A ∆0

2 Set with
No Infinite Low Subset in Either It or Its Complement [DHLS01]. The proof uses
a rather complex infinite injury priority argument; to learn more about this
type of proof see [Lem] or [DH10, 2.11-2.14].

Before continuing, we state an important theorem of [CJS01] that gives another
insight regarding the complexity of the solutions of Ramsey’s theorem for pairs.

Theorem 1.3.34 ([CJS01, Theorem 3.1]). For any computable instance of
RT2

k, there is a low2 solution, i.e. an infinite homogeneous set H such that
H ′′ 6T ∅′′.

2005 and 2007: the ADS+ EM decomposition
In 2005, another decomposition was unveiled by Bovykin and Weiermann in
their paper The strength of infinitary Ramseyan principles can be accessed by their
densities [BW17]. They proved that RT2

2 is equivalent to the combination of two
statements called CAC and EM (see [BW17, Theorem 8]). The former will be
studied in greater detail in Chapter 2, for a definition see Statement 2.1.1. We
now define the latter.

Definition 1.3.35. A coloring f : [N]2 → 2 is transitive for a set H ⊆ N if
for any color i < 2, and any x<y<z ∈ H we have

f(x, y) = f(y, z) = i =⇒ f(x, z) = i

Accordingly, the set H is said to be transitive for f . If the context is clear,
or if H = N, then we can simply say “transitive” in both cases.

Statement 1.3.36 (Erdős-Moser (EM)). For all coloring f : [N]2 → 2, there
exists an infinite transitive set.

Moreover, according to their paper, they were informed by Montalbán that
CAC can be replaced with a weaker principle called ADS.

59

Chapter 1 Introduction

Statement 1.3.37 (Ascending Descending Sequence). Any infinite linear or-
der has an infinite sequence that is either ascending or descending.

Theorem 1.3.38. RCA0 ` RT2
2 ⇐⇒ (ADS+ EM)

These statements, along with others, have then been studied more extensively
by Hirschfeldt and Shore in Combinatorial Principles Weaker than Ramsey’s
Theorem for Pairs [HS07], written in 2007. Their paper gives a more precise
picture of the hierarchy of the statements below RT2

2. However, they did not
answer the natural question that arose from this new decomposition.

Question 9. Is ADS+ EM a strict decomposition of RT2
2?

Answer in Theorem 1.3.42.

2008: COH does not imply RT2
2

Around 2008, a negative answer to Question 6 was provided by Hirschfeldt,
Jockusch, Kjos-Hanssen, Lempp and Slaman in their paper The Strength of
Some Combinatorial Principles Related to Ramsey’s Theorem for Pairs [HJKH+08].

Theorem 1.3.39. RCA0 6` COH =⇒ RT2
2

To prove this result, they showed that SRT2
2 implies a statement called DNR (see

[HJKH+08, Theorem 2.4]), whereas RCA0 + COH does not prove this statement
(see [HJKH+08, Theorem 3.7]), hence RCA0 + COH does not prove SRT2

2. In the
paper, they also asked the following question, as an alternative approach to prove
Question 7. As of today, it is still open.

Open question 1 ([HJKH+08, Question 1.1]). Let A be ∆0
2. Is there an infinite

subset in either A or A, that is both ∆0
2 and low2?

June 2012: Liu’s theorem
In 2012, a negative answer was brought to Question 5 by Liu.

60

1.3 Reverse mathematics

Theorem 1.3.40 (Liu). RCA0 6` RT2
2 =⇒ WKL

This came as a big surprise since at the time Liu was only an undergraduate
student unknown to the rest of the community. He wrote his proof in a paper called
“RT2

2 does not imply WKL” [Liu12] and sent it to the Journal of Symbolic Logic
for publication. A simplified version of the proof was later given in Hirschfeldt’s
book Slicing the Truth [Hir15, Lagniappe]. In his article, Liu proved that non-PA
degrees are strongly preserved by RT1

k. This implies that RT2
k preserves non-PA

degrees, because of the bridge we saw earlier between computable instances of RT2
k

and ∆0
2 instances of RT1

k.

Theorem 1.3.41 (Liu [Liu12, Theorem 1.5]). For any set C not of PA-degree
and any set A. There exists an infinite subset G of A or A, such that G⊕ C

is also not of PA-degree.

Once again this allows for the construction of a model of RT2
2 that is not a model

of WKL0, see [Liu12, Corollary 1.6] for the detailed construction.
Hence, after four decades of research, the status of RTn

k was known for every n
and k. In particular, RT2

2 became the first example of a “natural” theorem proven
to escape the Big Five phenomenon. The most pressing questions remaining were
regarding the different decompositions of RT2

2.

ACA0 RT3
2 RT4

2 · · ·

WKL0 RT2
2

RCA0 RT1
2

Figure 1.9: Ramsey’s theorem in the Big Five hierarchy

Decembre 2012: computable and Weihrauch reduction
At the end of 2012, new notions of reducibility between principles were being
investigated. The idea was to cast a new light on known statements to learn

61

Chapter 1 Introduction

more about them, and hopefully bring answers to open questions. On one hand,
Dzhafarov defined computable reducibility and its strong counterpart in Cohe-
sive avoidance and arithmetical sets [Dzh12].18 On the other hand Dorais, Dzha-
farov, Hirst, Mileti, and Shafer investigated Weihrauch reducibility and its
strong counterpart in their paper On uniform relationships between combinatorial
problems [DDH+16].19

Note that these new reducibilities brought new questions regarding Ramsey’s
theorem. For example, in line with [DDH+16, Question 7.1]:

Question 10. Does RTn
k+1 6c RT

n
k hold?

Answer in Theorem 1.3.44.

Indeed, we have seen with Proposition 1.3.17 that the number of colors is not
relevant to the study of Ramsey’s theorem when it is standard. Nonetheless, the
new reductions are “resource-sensitive”, i.e. they do not allow multiple applications
of the theorem in the reduction. So the method used in Proposition 1.3.17 does not
hold anymore. In [DDH+16, Theorem 3.1], a partial answer is given, the authors
proved that ∀2 6 j < k,RTn

k 66sW RTn
j .

2013: ADS+ EM is a strict decomposition of RT2
2

In 2013, Lerman, Solomon and Towsner answered Question 9 in a paper titled
Separating principles below Ramsey’s Theorem for Pairs [LST13]

Theorem 1.3.42. The decomposition of RT2
2 into ADS+ EM is strict.

Specifically, they used iterated forcing to prove that ADS is not equivalent to
CAC, and that EM does not imply RT2

2. Moreover, in 2015, Patey wrote a simpler
proof in a paper called Iterative forcing and hyperimmunity in reverse mathematics
[Pat15].

18This paper was published in 2014 under a slightly different name Cohesive avoidance and
strong reductions [Dzh14]

19The paper was only published in 2016, but the first online version is from 2012. Moreover,
in that first version, the authors actually define what they call “uniform reducibility”. Only
later did they learn they had rediscovered Weihrauch reducibility.

62

1.3 Reverse mathematics

2014: partial answer for SRT2
2

In 2014, Chong, Slaman, and Yang partially solved our only remaining question,
Question 7, in their paper The metamathematics of Stable Ramsey’s Theorem for
Pairs [CSY14]. They proved that SRT2

2 does not imply RT2
2 by constructing a

model of RCA0 + SRT2
2 whose first-order part is non-standard and in which every

set is low [CSY14, Theorem 2.2]. Indeed, the proof mentioned earlier dismissing
the approach of Question 8 relies on IΣ0

2 to work. However, by forcing, a model
with a non-standard first-order part can verify the negation of IΣ0

2, allowing us to
build a model in which SRT2

2 always has a low solution. To fully answer Question 7
we now need to know if this result also applies to ω-models.

Question 11. Is there an ω-model of SRT2
2 that is not a model of RT2

2?

Answer in Section 1.3.8.

2014 to 2016: results with computable and Weihrauch reduction
In 2014, Dzhafarov used the new reductions uncovered a few years prior, to
investigate SRT2

2 and COH. This resulted in a paper titled Strong Reductions
Between Combinatorial Principles [Dzh16], where he notably proved the following
result.

Proposition 1.3.43. COH 66sc SRT
2
2

Since strong Weihrauch reducibility implies strong computable reducibility, the
above result is also valid for strong Weihrauch reduction.

In 2015, Hirschfeldt and Jockusch submitted a paper, titled On notions of
computability-theoretic reduction between Π1

2 principles [HJ16], in which the new
reductions are used. Like in [CJS01], many results were proven, notably they
showed that, for n > 3, there exists a computable instance of RTn

2 such that every
solution is of PA degree over ∅(n−2) [HJ16, Corollary 2.2].

Later, in 2016, the authors were informed that some results in their paper were
also obtained independently by Patey in [Pat16c], as well as Rakotoniaina during
his PhD under the supervision of Brattka. In particular, they all proved that
∀n > 2,∀k > ` > 2,RTn

k 66W RTn
` [HJ16, Theorem 3.3], which improved the result

of 2012. However, Patey had proven a stronger result that answered Question 10.

63

Chapter 1 Introduction

Theorem 1.3.44 ([Pat16c, Corollary 3.14]). For every n > 2 and every k >
` > 2, we have SRTn

k 66c RT
n
`

2019: final answer for SRT2
2

Finally, in 2019, roughly twenty years after the question was asked, Monin and
Patey confirmed that SRT2

2 + COH is a strict decomposition, even for ω-models.
Their result was published in 2021, in a paper called SRT2

2 does not imply RT2
2 in

omega-models [MP21], thus answering Question 11.

Disclaimer and open questions
The above presentation is only an approximate story where many details, open
questions, and theorems had to be excluded for conciseness. For a list of open
questions20 see [Mon11] and [Pat16a].

20Some of them may already be answered now, due to the age of the documents.

64

CHAPTER 2

CAC FOR TREES

2.1 Introduction
In this chapter, we study the computability-theoretic strength of the statement
CAC for trees, which is a variation on the well-studied chain-antichain theorem
(CAC). It turns out CAC for trees has different characterizations, making it a
robust notion, suitable for future studies in reverse mathematics.

The study of CAC for trees started with the study of Ramsey-like theorems for
3-variable forbidden patterns. The attempt to prove Corollary 2.6.13 naturally led
to the study of the SHER principle, already defined by Dorais and al. [DDH+16].
Thanks to multiple personal communications with François Dorais, we realized
that the SHER principle is closely related to trees, and more precisely, equivalent
to the chain-antichain principle for trees, a principle studied by Binns et al. in
[BKHL+14]. We later realized that SHER is also equivalent to TAC+ BΣ0

2, where
TAC is an antichain principle for completely branching c.e. trees, defined by Conidis
[Con]. Some of the results are therefore independent rediscoveries of some theorems
from [BKHL+14, Con], but in a more unified setting.

2.1.1 A chain-antichain theorem for trees
Among the consequences of Ramsey’s theorem for pairs, the chain-antichain the-
orem received a particular focus in reverse mathematics.

Statement 2.1.1 (Chain AntiChain (CAC)). Every infinite partial order has
either an infinite chain or an infinite antichain.

65

Chapter 2 CAC for trees

CAC was first studied in [HS07] by Hirschfeldt and Shore, following a question
raised by Cholak, Jockusch and Slaman in [CJS01, Question 13.8] asking whether
or not CAC =⇒ RT2

2 over RCA0, for which they proved the answer is negative
(Corollary 3.12). The reciprocal RCA0 ` RT2

2 =⇒ CAC is easier to obtain, by
defining a coloring such that {x, y} has color 1 if its elements are comparable,
and 0 otherwise. Any homogeneous set for this coloring is either a chain or an
antichain, depending on its color.

In this chapter, we focus on the special case where the order is the predecessor
relation ≺ on a tree.

Statement 2.1.2 (CAC for trees). Every infinite (binary) subtree of N<N has
an infinite path or an infinite antichain.

This statement was first introduced by Binns et al. in [BKHL+14], where the
authors showed that every infinite computable tree must have either an infinite
computable chain or an infinite Π0

1 antichain. Furthermore, they showed that
these bounds are optimal, by constructing an infinite computable tree that has no
infinite Σ0

1 chain or antichain. They also showed that WKL0 6` CAC for binary trees,
[BKHL+14, Corollary 6.5].

2.1.2 Ramsey-like statements
In [Pat19], Patey identified a formal class of theorems, encompassing several state-
ments surrounding Ramsey’s theorem. Indeed, many of them are of the form “for
every coloring f : [N]n → k avoiding some set of forbidden patterns, there exists
an infinite set H ⊆ N avoiding some other set of forbidden patterns (relative to
f)”. Such statements are called Ramsey-like theorems.

For example, recall that EM asserts that “for any coloring f : [N]2 → 2, there
exists an infinite set H ⊆ N which is transitive for f”, i.e. ∀i < 2,∀x<y<z ∈
H, f(x, y) = i ∧ f(y, z) = i =⇒ f(x, z) = i. In other terms, we want H to
avoid the patterns, f(x, y) = i ∧ f(y, z) = i ∧ f(x, z) = 1 − i for any i < 2, that
would make it not transitive for f . Another example is ADS, which is equivalent
over RCA0 to the statement “for any transitive coloring f : [N]2 → 2 (i.e. avoiding
certain patterns), there exists an infinite set H ⊆ N which is f -homogeneous” (see
[HS07, Theorem 5.3]). With these formulations, the equivalence between RT2

2 and
EM+ADS over RCA0 is very clear, since EM takes any coloring and “turns it into”

66

2.1 Introduction

a transitive one, and ADS takes any transitive coloring and finds an infinite set
which is homogeneous for it.

2.1.3 Forbidden patterns on 3 variables

Forbidden patterns on 3 variables and 2 colors are generated by the following three
basic patterns:

(1) f(x, y) = i ∧ f(y, z) = i ∧ f(x, z) = 1− i

(2) f(x, y) = i ∧ f(y, z) = 1− i ∧ f(x, z) = i

(3) f(x, y) = 1− i ∧ f(y, z) = i ∧ f(x, z) = i

Avoiding them respectively leads to transitivity, semi-ancestry, and semi-
heredity (for the color i). Each of them generates two ramsey-like statements, one
restricting the input coloring, and one restricting the output infinite set, namely
“for any 2-coloring of pairs avoiding the forbidden pattern, there exists an infi-
nite homogeneous set” and “for any 2-coloring of pairs, there exists an infinite set
H ⊆ N which avoids the forbidden pattern”. We now survey the known results
about these three patterns.

Transitivity. The statement “for any 2-coloring of pairs, there exists an infinite
set which is transitive for some color” is a weaker version of EM. The Erdös-Moser
theorem was proven to be strictly weaker than Ramsey’s theorem for pairs over
RCA0 by Lerman, Solomon, and Towsner [LST13, Corollary 1.16]. On the other
hand, the statement “for any 2-coloring of pairs which is transitive for some color,
there exists an infinite homogeneous set” is equivalent to CAC (see [HS07, Theorem
5.2]), which is also known to be strictly weaker than RT2

2 over RCA0 (see Hirschfeldt
and Shore [HS07, Corollary 3.12]).

Semi-ancestry. The statement “for any 2-coloring of pairs which has semi-
ancestry for some color, there exists an infinite homogeneous set” is a consequence
of the statement STRIV, defined by Dorais et al. [DDH+16, Statement 5.12]),
because a 2-coloring is semi-trivial if and only if it has semi-ancestry. And STRIV

itself is equivalent to RT1
<∞ (see the remark below its definition). The statement

“for any 2-coloring of pairs, there exists an infinite set which has semi-ancestry for
some color” is equivalent to RT2

2 (see Proposition 2.6.11).
Semi-heredity. The statement “for any 2-coloring of pairs which is semi-

hereditary for some color, there exists an infinite homogeneous set” is the state-
ment SHER, which was first introduced by Dorais et al. [DDH+16, Statement
5.11]. In Section 2.6, we will show that it is equivalent to CAC for trees. Finally,

67

Chapter 2 CAC for trees

the statement “for any 2-coloring of pairs, there exists an infinite set which is
semi-hereditary for some color” is equivalent to RT2

2 (see Corollary 2.6.13).

Property
Restriction Input Output

Transitivity Equivalent to CAC Weaker version of EM
Semi-ancestry Equivalent to RT1

<∞ Equivalent to RT2
2

Semi-heredity SHER, equivalent to
CAC for trees

Equivalent to RT2
2

Table 2.1: Summary of the equivalences for each forbidden pattern and restriction.

2.2 CAC for trees and its equivalences
In this section, we study some variations of CAC for trees and prove they are
all equivalent. We also study TAC and show that TAC + BΣ0

2 is equivalent to
CAC for trees. We start by defining these statements.

Statement 2.2.1 (CAC for c.e. (binary) trees). Every infinite c.e. (binary)
subtree of N<N has an infinite path or an infinite antichain.

In the context of reverse mathematics “being c.e.” is a notion relative to the
model considered. An object is c.e. when it can be approximated in a c.e. manner
by objects from the model, as described in Section 1.2.7.

Definition 2.2.2. A node σ of a tree T ⊆ N<N is a split node when there
is n0, n1 ∈ N such that ∀i < 2, σ · ni ∈ T . In particular, if T is a binary tree,
then σ is a split node when both σ · 0 ∈ T and σ · 1 ∈ T . A tree T ⊆ 2<N is
completely branching when, for any of its node σ, if σ is not a leaf then it
is a split node.

The following statement was introduced by Conidis [Con] (personal communi-
cation), motivated by the reverse mathematics of commutative noetherian rings.

Statement 2.2.3 (Tree AntiChain (TAC), [Con]). Any infinite c.e. subtree of
2<N which is completely branching, contains an infinite antichain.

68

2.2 CAC for trees and its equivalences

Conidis [Con, Corollary 4.2] proved that TAC follows from ADS over RCA0.
He also constructed an instance of TAC whose solutions are all of hyperimmune
degree [Con, Corollary 4.16], and used this result to prove that WKL0 0 TAC [Con,
Corollary 4.17]. We now proceed with the proof of the equivalence.

Theorem 2.2.4. The following statements are equivalent over RCA0 and com-
putable reduction:

(1) CAC for trees

(2) CAC for c.e. trees

(3) CAC for c.e. binary trees

(4) TAC+ BΣ0
2

Proof. (2) =⇒ (1) and (2) =⇒ (3) are immediate. (3) =⇒ (4) is Proposi-
tion 2.2.5 and Proposition 2.2.6. (4) =⇒ (2) is Proposition 2.2.7. (1) =⇒ (2) is
Proposition 2.2.8.

We shall see in Section 2.3 that the use of BΣ0
2 is necessary for the above equiv-

alence, as TAC does not imply BΣ0
2 over RCA0.

Proposition 2.2.5. RCA0 ` CAC for c.e. binary trees =⇒ TAC and TAC 6c

CAC for c.e. binary trees.

Proof. Let T ⊆ 2<N be an infinite completely branching c.e. tree. By the statement
CAC for c.e. binary trees, either there is an infinite antichain, or an infinite path P .
In the former case, we are done. In the latter case, using the fact that T is
completely branching, the set {σ · (1 − i) : σ · i ≺ P} is an infinite antichain of
T .

Proposition 2.2.6. RCA0 ` CAC for c.e. binary trees =⇒ RT1
<∞

and RT1
<∞ 6c CAC for c.e. binary trees.

Proof. Let f : N → k be a coloring, there are two possibilities. Either ∃i <
k, ∃∞x, f(x) = i, in which case there is an infinite computable f -homogeneous set.
Otherwise ∀i < k, ∀∞x, f(x) 6= i, in which case we define an infinite binary c.e.
tree T , via a strictly increasing sequence of computable trees (Tj)j∈N defined by
T0 := {0i : i < k} and Ts+1 := Ts ∪ {0f(s) · 1m+1}, where m is the number of x < s

such that f(x) = f(s).
Every antichain in T is of size at most k, thus, by CAC for c.e. binary trees, T

must contain an infinite path, and so ∃i < k, ∃∞x, f(x) = i, which is a contradic-
tion.

69

Chapter 2 CAC for trees

Proposition 2.2.7. RCA0 ` TAC+ BΣ0
2 =⇒ CAC for c.e. trees and

CAC for c.e. trees 6c TAC

Proof. Let T ⊆ N<N be an infinite c.e. tree. We can deal with two cases di-
rectly: if T has a node with infinitely many immediate children, then it contains a
computable infinite antichain; and if T has finitely many split nodes, then it has
finitely many paths P0, . . . , Pk−1, which are all computable. Moreover one of them
is infinite, as otherwise they would all be finite, i.e. ∀i < k, ∃s,∀n > s, n /∈ Pi,
and thus their union would be finite since BΠ0

1 (which is equivalent to BΣ0
2) yields

∃b,∀i < k, ∃s < b, ∀n > s, n /∈ Pi. But since T =
⋃

i<k Pi, this would lead to a
contradiction. For the remaining case, we define a split triple of T to be a triple
(µ, n0, n1) ∈ T × N × N such that µ, µ · n0, µ · n1 ∈ T . In particular, µ is a split
node in T .

Idea. The general idea is to build greedily a completely branching c.e. tree
S by looking for split triples in T , and mapping them to split nodes in S. This
correspondence is witnessed by an injective function f : S → T that will be
constructed alongside S. The main difficulty is that, since T is c.e., a split node
ρ can be discovered after µ even though ρ ≺ µ, which means that we will not
be able to ensure that S can be embedded in T . In particular, f will not be a
tree morphism. However, the only property that needs to be ensured is that for
every infinite antichain A of S, the set f(A) will be an infinite antichain of T . To
guarantee this, the function f needs to verify

∀σ, ν ∈ S, σ|ν =⇒ f(σ)|f(ν) (∗)

During the construction, at any step s, we are going to associate to each node
σ ∈ S a c.e. set N s

σ ⊆ T , which might decrease in size over time (N0
σ ⊇ N1

σ ⊇ . . .),
with the property that the elements of {N s

σ : σ ∈ S} are pairwise disjoint, and
their union contains cofinitely many elements of T . The role of N s

σ is to indicate
that “if a split triple is found in N s

σ, then the nodes in S, associated via f , must
be above σ”.

Construction. Initially, N0
ε := T , S := {ε} and f(ε) := ε. At step s, suppose

we have defined a finite, completely branching binary tree S ⊆ 2<N, and for every
σ ∈ S, a set N s

σ ⊆ T such that {N s
σ : σ ∈ S} forms a partition of T minus finitely

many elements. Moreover, assume we have defined a mapping f : S → T .
Search for a split triple (µ, n0, n1) in

⋃
σ∈S N

s
σ. Let σ ∈ S be such that µ ∈ N s

σ.
Let τ be any leaf of S such that τ � σ (for example pick the left-most successor

70

2.2 CAC for trees and its equivalences

of σ). Add τ · 0 and τ · 1 to S, and set f(τ · i) = µ · ni for each i < 2. Note that S
is still completely branching.

Then, split N s
σ into three disjoint subsets N s+1

σ , N s+1
τ ·0 , N s+1

τ ·1 as follows: for
i < 2, N s+1

τ ·i := {ρ ∈ N s
σ : ρ < µ · ni} and N s+1

σ := {ρ ∈ N s
τ : ∀i < 2, ρ|µ · ni}.

Note that these sets do not form a partition of N s
σ as we missed the nodes in

{ρ ∈ N s
σ : ρ 4 µ}, fortunately there are only finitely many of them. Lastly, set

N s+1
ν := N s

ν for every ν ∈ S − {σ, τ · 0, τ · 1}.
Verification. First, let us prove that at any step s,

⋃
σ∈S N

s
σ contains infinitely

many split triples, which ensures that the search always terminates. Note that
T −

⋃
σ∈S N

s
σ is a ∆0

2 subset of
⋃

σ∈S{ρ : ρ 4 σ}, hence exists by bounded ∆0
2

comprehension, which follows from BΣ0
2. Moreover, by assumption, T is a finitely

branching c.e. tree, which means that every ρ ∈ T−
⋃

σ∈S N
s
σ belongs to a bounded

number of split triples of T . By BΣ0
1 (which follows from RCA0), the number of

split triples in T which involve a node from T −
⋃

σ∈S N
s
σ is bounded. Since

by assumption, T contains infinitely many split triples,
⋃

σ∈S N
s
σ must contain

infinitely many of them.
Second, we prove by induction on s that ∀s ∈ N,∀σ 6= ν ∈ S,N s

σ|N s
ν , i.e. ∀µ ∈

N s
σ, ∀ρ ∈ N s

ν , µ|ρ. At step 0, the assertion is trivially verified. At step s, suppose
we found the split triple (µ, n0, n1) in the set N s

σ, and that ∀i < 2, f(τ · i) = µ · ni

where τ < σ. Since µ was found in N s
σ, the latter is split into N s+1

τ ·0 , N s+1
τ ·1 and

N s+1
σ , the other sets remain identical. By construction, and because they are all

subsets of N s
σ, the assertion holds.

We now prove (∗), consider σ, ν ∈ S such that σ|ν. WLOG suppose ν was added
to S sooner than σ, more precisely f(ν) appeared (as child in a split triple) at step
s in some set N s

−, so N s+1
ν contains f(ν) by construction. Since σ was added to S

after ν, there exists ρ ∈ S such that f(σ) ∈ N s+1
ρ . By contradiction ρ 6= σ holds,

as otherwise f(σ) ∈ N s+1
τ , and so σ would extend τ by construction of S. Thus

by using the previous assertion, we deduce f(σ)|f(ν).

Proposition 2.2.8. RCA0 ` CAC for trees =⇒ CAC for c.e. trees and
CAC for c.e. trees 6c CAC for trees.

Proof. Let T ⊆ N<N be a c.e. tree. We define the computable tree S ⊆ N<N by
〈n0, s0〉 · . . . · 〈nk−1, sk−1〉 ∈ S if and only if for all j < k, sj is the smallest integer
such that n0 · . . . · nj ∈ T [sj], where T [sj] is the approximation of T at stage sj.

By CAC for trees, there is an infinite chain (resp. antichain) in S, and by for-
getting the second component of each string, we obtain an infinite chain (resp.
antichain) in T .

71

Chapter 2 CAC for trees

Before finishing this section, we introduce a set version of the principle TAC,
which is more convenient to manipulate than TAC. Indeed, when working with
TAC, the downward closure of the tree is not relevant, and we naturally end up
taking an infinite computable subset of the tree rather than working with the c.e.
tree. This motivates the following definitions.

Definition 2.2.9. A set X ⊆ 2<N is completely branching if

∀σ ∈ 2<N, (σ · 0 ∈ X ⇐⇒ σ · 1 ∈ X)

Note that the above definition is compatible with the notion of completely
branching tree.

Statement 2.2.10 (Set AntiChain (SAC)). Every infinite completely branch-
ing set X ⊆ 2<N has an infinite antichain.

The set antichain theorem is equivalent to the tree antichain theorem, as the
following lemma shows.

Lemma 2.2.11. RCA0 ` SAC ⇐⇒ TAC.

Proof. SAC =⇒ TAC. Let T ⊆ 2<N be an infinite, completely branching c.e. tree.
Let S ⊆ T be an infinite computable, completely branching set. By SAC, there is
an infinite antichain A ⊆ X. In particular, A is an antichain for T .

SAC ⇐= TAC. Let S ⊆ 2<N be an infinite computable, completely branching
set. One can define an infinite computable tree T ⊆ N<N by letting σ ∈ T iff for
every n < |σ|, σ(n) codes for a binary string τn ∈ S, such that for every n < |σ|−1,
τn ≺ τn+1, and there is no string in S strictly between τn and τn+1. The tree T is
such that every chain in T codes for a chain in S, and every antichain in T codes
for an antichain in S. We can see T as an instance of CAC for trees. Moreover,
since S is completely branching, then T has infinitely many split triples, so the
proof of Proposition 2.2.7 applied to this instance T of CAC for trees does not use
BΣ0

2. Thus there is either an infinite chain for T , or an infinite antichain for S.
With the appropriate decoding, we obtain an infinite antichain for S.

72

2.3 Probabilistic proofs of SAC

2.3 Probabilistic proofs of SAC

The restriction of CAC to trees yields a strictly weaker statement from the view-
point of arithmetical bounds in the arithmetic hierarchy. Indeed, by Herrmann
[Her01, Theorem 3.1], there is a computable partial order with no ∆0

2 infinite
chain or antichain, while by Binns et al. in [BKHL+14, Theorem 6.2], every infi-
nite computable tree must have either an infinite computable chain or an infinite
Π0

1 antichain. In this section, we go one step further in the study of the weakness of
CAC for trees by proving that SAC admits probabilistic solutions. This result can
also be obtained from the fact that TAC 6c 2-RAN, which was proved by Conidis
[Con, Corollary 4.8]. However, we provide a different and more direct proof here,
relying on two technical lemmas.

Lemma 2.3.1 (RCA0). Let S ⊆ 2<N be an infinite completely branching set.
Then for every n, there exists an antichain of size n.

Proof. By finite Ramsey’s theorem for pairs and 2 colors (which holds in RCA0),
there exists some p ∈ N such that for every 2-coloring of [p]2, there exists a
homogeneous set of size n. Since S is infinite, there exists a subset P ⊆ S of size
p. By choice of p, there exists a subset Q ⊆ P of size n such that Q is either a
chain or an antichain. In the latter case, we are done. In the former case, since S
is completely branching, the set {σ̂ : σ ∈ Q} ⊆ S is an antichain, where σ̂ is the
string obtained from σ by flipping its last bit.

Lemma 2.3.2 (RCA0). Let S ⊆ 2<N be an infinite completely branching set.
Then for every antichain A ⊆ S, for all but at most one σ ∈ A, the set
Sσ := {τ ∈ S : σ|τ and |τ | > |σ|} is infinite and completely branching.

Proof. First, since S ⊆ 2<N completely branching, then for every σ ∈ 2<N, the
set Sσ is completely branching. Suppose for the sake of contradiction that there
exists two strings σ, ρ ∈ A such that Sσ and Sρ are both finite. Then pick any
τ ∈ S−(Sσ∪Sρ) with |τ | > max(|σ|, |ρ|). It follows that σ ≺ τ and ρ ≺ τ , and thus
that σ and ρ are comparable, contradicting the fact that A is an antichain.

Proposition 2.3.3. The measure of the oracles computing a solution for a
computable instance of SAC is 1.

73

Chapter 2 CAC for trees

Remark 2.3.4. The proof of the above proposition is carried out purely as a
computability-theoretic statement, hence we have access to as much induction
as needed.

Proof. Let S ⊆ 2<N be a computable and infinite completely branching set. We
are going to build a decreasing sequence of infinite completely branching sets of
strings S0 ⊇ S1 ⊇ . . . , with S0 := S, together with finite antichains Ai ⊆ Si (for
i ∈ N), in order to obtain an infinite antichain A := {σi : i ∈ N} where σi ∈ Ai.

This construction will work with positive probability, and since the class of ora-
cles computing a solution to the instance S is invariant under Turing equivalence,
this implies that this class has measure 1. Indeed, by Kolmogorov’s 0-1 law, every
measurable Turing-invariant class has either measure 0 or 1.

First, let S0 := S. At step k, assume the sets S0 ⊇ S1 ⊇ . . . ⊇ Sk and
A0, . . . , Ak−1 have been defined, as well as the finite antichain {σ0, . . . , σk−1}, such
that ∀τ ∈ Sk,∀i < k, σi|τ .

Search computably for a finite antichain Ak ⊆ Sk of size 2k+2. If found, pick an
element σk ∈ Ak at random. Then define Sk+1 := {τ ∈ Sk : σk|τ and |τ | > |σk|}
for the next step.

If the procedure never stops, it yields an infinite antichain A := {σi : i ∈
N} thanks to the definition of the sets (Si)i<k. Assuming that Sk is an infinite
completely branching set, Lemma 2.3.1 ensures that Ak will be found.

However, if at any point, Sk is not an infinite completely branching set, then at
some point t we will not be able to find a large enoughAt in it. If this happens, since
Sk+1 is completely determined by Sk and σk, it means that we have chosen some
“bad” σk ∈ Ak. Luckily, by Lemma 2.3.2, there is at most one element of this kind
in Ak. Thus, if we pick σk at random in Ak, we have at most 1

|Ak|
= 1

2k+2 chances
for this case to happen. So the overall probability that this procedure fails is less
than

∑
k>0

1
2k+2 = 1

2
. Hence we found an antichain with positive probability.

Very few theorems studied in reverse mathematics admit a probabilistic proof.
Proposition 2.3.3 provides a powerful method for separating the statement CAC for trees

from many theorems in reverse mathematics. In what follows, AMT stands for the
Atomic Model Theorem, studied by Hirschfeldt, Shore, and Slaman [HSS09], COH
is the cohesiveness principle, defined by Cholak, Jockusch, and Slaman [CJS01,
Statement 7.7], and RWKL is the Ramsey-type Weak König’s lemma, defined by
Flood [Flo12, Statement 2] under the name RKL.

Corollary 2.3.5. Over RCA0, CAC for trees implies none of AMT, COH and
RWKL.

74

2.3 Probabilistic proofs of SAC

Proof. These three statements have a computable instance such that the measure
of the oracles computing a solution is 0, see Astor et al. [ABD+].

The argument in the proof of Proposition 2.3.3 can be formalized over RCA0

to yield the following result. Conidis [Con, Corollary 4.8] independantly proved a
slightly weaker version, namely RCA0 + IΣ0

2 ` 2-RAN =⇒ SAC.

Statement 2.3.6 (2-RAN). For every sequence of uniformly Π0
2 binary trees

T0, T1, . . . such that, for every n, µ([Tn]) > 1− 2−n, there is some n and some
set X such that X ∈ [Tn].

Proposition 2.3.7. RCA0 ` 2-RAN =⇒ SAC.

Proof. For every n, consider the construction of Proposition 2.3.3, where the an-
tichain Ak is of size 2n+k+1 instead of 2k+2. For each k, let σk ∈ Ak be the unique
“bad” choice (if it exists), that is, which makes the set Sk+1 finite, and let τk be
the string of length n + k + 1 corresponding to the binary representation of the
rank of σk in Ak for some fixed order on binary strings. Then one can compute σk
from τk and the finite set Ak. Note that τk is undefined when σk does not exist.

Consider the Σ0
2 class Un := {X ∈ 2N : ∃k, τk ≺ X} =

⋃
k[τk]. It verifies

µ(Un) 6
∑
k>0

σk exists

µ
(
[τk]

)
6

∑
k>0

1

2n+k+1
= 2−n

Let Tn be a Π0
2 tree such that [Tn] = 2N − Un. We can now consider the sequence

of trees (Tn)n∈N. By 2-RAN, there is some n and some X ∈ [Tn]. For any instance
of SAC, find a solution by running the construction given in Proposition 2.3.3 with
the help of X to avoid the potential “bad” choice in each Ak.

Corollary 2.3.8. Over RCA0, SAC (and therefore TAC) implies none of BΣ0
2 and

CAC for trees.

Proof. Slaman [Sla11] proved that 2-RAN does not imply BΣ0
2 over RCA0. The

corollary follows from RCA0 ` SAC =⇒ TAC (Lemma 2.2.11) and RCA0 `
TAC+ BΣ0

2 ⇐⇒ CAC for trees (Theorem 2.2.4).

We are now going to refine Proposition 2.3.3 by proving that some variant of
DNC is sufficient to compute a solution of SAC.

75

Chapter 2 CAC for trees

Definition 2.3.9 (Diagonally non-computable function). A function f : N →
N is diagonally non-computable relative to X (or DNC(X)) if for every
e, f(e) 6= ΦX

e (e). Whenever f is dominated by a function h : N → N, then we
say that f is DNCh(X). A Turing degree is DNCh(X) if it contains a DNCh(X)

function.

The following lemma gives a much more convenient way to work with DNCh(X)

functions.

Lemma 2.3.10 (Folklore). Let A,X be subsets of N. The following are
equivalent:

(1) A is of degree DNCh(X) for some computable (primitive recursive) func-
tion h : N → N.

(2) A computes a function g : N2 → N such that

∀e, n, |WX
e | 6 n =⇒ g(e, n) /∈ WX

e

and which is dominated by a computable function b : N2 → N, i.e.

∀e, n, g(e, n) < b(e, n)

Proof. (2) =⇒ (1). Let i : N → N be a computable (primitive recursive) function
such that for any e ∈ N and B ⊆ N we have ΦB

i(e)(x) ↓ ⇐⇒ x = ΦB
e (e). Thus

WB
i(e) =

{{
ΦB

e (e)
}

if e ∈ B′

∅ otherwise

From there, define the A-computable function f : N → N by f : e 7→ g(i(e), 1).
It is DNC(X) because g(i(e), 1) /∈ WX

i(e) since |WX
i(e)| 6 1. Moreover, f is dominated

by the computable function e 7→ b(i(e), 1), because b computably dominates g.

(1) =⇒ (2). Let f be a DNCh(X) function computed by A. Given the pair
e, n, we describe the process that defines g(e, n).

Construction. For each i < n, we compute the code u(e, i) of theX-computable
function which, on any input, looks for the ith element of WX

e . If it finds such an
element, then it interprets it as an n-tuple 〈k0, . . . , kn−1〉 and returns the value ki.
If it never finds such an element, then the function diverges. Finally we define
g : e, n 7→ 〈f(u(e, 0)), . . . , f(u(e, n− 1))〉

76

2.3 Probabilistic proofs of SAC

Verification. First, since f is dominated by h, and since the function 〈−, . . . ,−〉
computing an n-tuple is increasing on each variable, we can dominate g with the
computable function

b : e, n 7→
〈
h(u(e, 0)) , . . . , h(u(e, n− 1))

〉
Now, by contradiction, suppose g does not satisfy (2), i.e. suppose there exists

e, n such that |WX
e | 6 n but g(e, n) ∈ WX

e . Because WX
e has fewer than n

elements, we can suppose g(e, n) is the ith one for a some i < n. Thus the
function ΦX

u(e,i) is constantly equal to ki where g(e, n) = 〈k0, . . . , kn−1〉, in particular
ΦX

u(e,i)(u(e, i)) = ki. But we also have

g(e, n) =
〈
f(u(e, 0)), . . . , f(u(e, n− 1))

〉
implying f(u(e, i)) = ki = ΦX

u(e,i)(u(e, i)), which is impossible as f is supposed to
be DNCh(X).

Before continuing, we also need a classic result of computability theory.

Lemma 2.3.11 (Kleene Fixed-Point Theorem). For any total computable
function f : N → N, there is an index e such that

Φf(e) = Φe

We are now ready to prove the following proposition. Conidis [Con] indepen-
dently proved the same statement for TAC with a similar construction. Note that
by the equivalence of TAC+BΣ0

2 with CAC for trees, Conidis’ result implies Propo-
sition 2.3.12.

Proposition 2.3.12. Let S ⊆ N<N be an instance of SAC. For any computable
function h, we have that every set X of degree DNCh(∅′) computes a solution
of S.

Remark 2.3.13. Once again, as in the case of Proposition 2.3.3, the proof here
is carried purely as a computability-theoretic statement, we have access to as
much induction as we need.

Proof. First, sinceX is of degree DNCh for a computable function h, by Lemma 2.3.10,
it computes a function g : N2 → N such that ∀e, n, |W∅′

e | 6 n =⇒ g(e, n) /∈ W∅′
e

and which is dominated by a computable function b : N2 → N.

77

Chapter 2 CAC for trees

The idea of this proof is the same as in Proposition 2.3.3, but this time we
are going to use g to avoid selecting the potential “bad” element in each finite
antichain, i.e. the element which is incompatible with only finitely many strings.
For any finite set A ⊆ S, let ψA : N → S be a bijection such that ψA

(
J0, |A|J

)
= A.

The procedure is the following. Initially, S0 := S. At step k, assume Sk ⊆ S

has been defined. To find the desired antichain Ak we use Kleene Fixed-Point
Theorem to find an index ek such that Φ∅′

ek
(n) is the procedure that halts if it finds

an antichain A ⊆ Sk whose size is greater than b(ek, 1) and ψA(n) ∈ A, and finds
(using ∅′) an integer m such that ∀` > m,ψA(`) � ψA(n).

Define Ak := A. By choice of A and ek,

W∅′

ek
=

{
{ψ−1

A (ρ)} if Ak has a bad element ρ
∅ otherwise

Finally we can define σk := ψA(g(ek, 1)). Indeed since |W∅′
ek
| 6 1 by construction,

g(ek, 1) /∈ W∅′
ek

. Moreover σk ∈ Ak, because g(ek, 1) < b(ek, 1) < |Ak|. This implies
that σk is not a bad element of Ak, in other words the set Sk+1 := {τ ∈ Sk :

τ |σk and |τ | > |σk|} is infinite.

2.4 Relation between CAC for trees and ADS + EM

Ramsey’s theorem for pairs admits a famous decomposition into the Ascending
Descending Sequence theorem (ADS) and the Erdős-Moser theorem (EM) over
RCA0. As mentioned in the introduction, both statements are strictly weaker than
RT2

2. These statements are generally thought of as decomposing Ramsey’s theorem
for pairs into its disjunctiveness part with ADS, and its compactness part with EM.
Indeed, the standard proof of ADS is disjunctive and does not involve any notion
of compactness, while the proof of EM is non-disjunctive and implies RWKL, which
is the compactness part of RT2

2.
ADS and EM are relatively disjoint, in that they are only known to have the

hyperimmunity principle as a common consequence, which is a particularly weak
principle. In this section however, we show that CAC for trees follows from both
ADS and EM over RCA0. We shall see in Section 2.5 that CAC for trees implies the
hyperimmunity principle.

The following proposition was proved by Dorais (personal communication) for
SHER, we here give an adaptation of this proof for CAC for trees. Besides, an

78

2.4 Relation between CAC for trees and ADS+ EM

alternative proof can be obtained by combining Conidis’ result that ADS implies
TAC over RCA0 [Con, Corollary 4.2] and Proposition 2.2.7, since ADS implies BΣ0

2.

Proposition 2.4.1. RCA0 ` ADS =⇒ CAC for trees and CAC for trees 6c

ADS

Proof. Let T ⊆ N<N be an infinite tree. We denote by <0 the lexicographic order
over T , i.e. the total order defined on T by σ <0 τ ⇐⇒ σ ≺ τ ∨ (σ|τ ∧ σ(d) <N

τ(d)) where d := min{k ∈ N : σ(k) 6= τ(k)}. By ADS, there is an infinite ascending
or descending sequence (σi)i∈N for (T,<0).

If it is descending, there are two possibilities. Either ∀∞i, σi 6 | σi+1, which
means we eventually have an infinite ≺-decreasing sequence of strings, which is
impossible. Or ∃∞i, σi|σi+1, in which case we have a sequence (`k)k∈N of indexes
such that ∀k, σ`k |σ`k+1, and we designate by (hk)k∈N the sequence (σ`k+1)k∈N, and
we show that it is an antichain of T .

To do so, it suffices to prove by induction on m that ∀m > 0,∀k, hk 6� hk+m.
When m = 1, due to how (σi)i∈N is structured, we have ∀k, hk < σ`k+1

and by
definition σ`k+1

|hk+1, thus hk 6� hk+1. We now consider hk and hk+(m+1). By
induction hypothesis, hk 6� hk+m and hk+m 6� h(k+m)+1. Moreover since hk >0

hk+m >0 hk+(m+1), we know there are minima d and e such that hk(d) > hk+m(d)

and hk+m(e) > hk+(m+1)(e). Now e < d implies hk+(m+1)(e) < hk+m(e) = hk(e),
e > d implies hk+(m+1)(d) = hk+m(d) < hk(d), and e = d implies hk+(m+1)(e) <

hk+m(e) < hk(e); in any case hk 6� hk+(m+1).
Now if the sequence (σi)i∈N is ascending, we again distinguish two possibilities.

Either ∀∞i, σi 6 | σi+1, which means we eventually obtain an infinite path of the
tree. Or ∃∞i, σi|σi+1, in which case we work in the same fashion as in the descend-
ing case: designate by (hk)k∈N the sequence (σ`k)k∈N of all such σi, and show by
induction on m that ∀m > 0,∀k, hk 6≺ hk+m.

Remark 2.4.2. Note that the above proof also works if we define <0 to be the
Kleene–Brouwer order on T , i.e. the total order defined on T by σ <0 τ ⇐⇒
σ � τ ∨ (σ|τ ∧ σ(d) <N τ(d)) where d := min{k ∈ N : σ(k) 6= τ(k)}.

Corollary 2.4.3. TAC does not imply 2-DNC nor 2-RAN

Proof. By Proposition 2.4.1 we have that ADS implies TAC, but ADS does not
imply 2-DNC ([HS07, Corollary 2.28]), hence neither does TAC. Moreover, since
2-RAN implies 2-DNC ([BPS17, Theorem 2.8]), we have that TAC does not imply
RAN either.

79

Chapter 2 CAC for trees

Proposition 2.4.4. RCA0 ` EM =⇒ CAC for trees and CAC for trees 6c EM

Proof. Let T ⊆ N<N be an infinite tree. We first define a T -computable bijection
ψ : N → T . To do so, let ϕ : N<N → N be the bijection x0 · . . . · xn−1 7→(
Πi<np

xi+1
i

)
− 1 where pi is the ith prime number. The elements of the sequence

(ϕ−1(n))n∈N that are in T form a subsequence denoted (sn)n∈N, and the function
ψ : N → T is defined by n 7→ sn. Note that the range of ψ is T . Moreover, if
σ ≺ τ ∈ T , then ϕ(σ) < ϕ(τ), hence ψ−1(σ) < ψ−1(τ).

Let f : [N]2 → 2 be the coloring defined by f({x, y}) = 1 iff x <N y and
ψ(x) ≺ ψ(y) coincide. By EM, there is an infinite transitive set S ⊆ N, i.e.
∀i < 2,∀x<y<z ∈ S, f(x, y) = f(y, z) = i =⇒ f(x, z) = i

Note that if there are x<y ∈ S such that f(x, y) = 0, then ∀z>y ∈ S, f(x, z) = 0.
Indeed given x<y<z ∈ S such that f(x, y) = 0, either f(y, z) = 0, and so by
transitivity we have f(x, z) = 0; or f(y, z) = 1, but in that case f(x, z) 6= 1

because it is impossible to simultaneously have ψ(y) ≺ ψ(z), ψ(x) ≺ ψ(z) and
ψ(x)|ψ(y).

Now two cases are possible. Either ∃∞j ∈ N, f(sj, sj+1) = 0, so consider the
infinite set A made of all such sj. Thanks to the previous property, A is f -
homogeneous for the color 0, and so ψ(A) is an infinite antichain. Or ∀∞j ∈
N, f(sj, sj+1) = 1, so there is a large enough k ∈ N such that ψ(sk) ≺ ψ(sk+1) ≺
. . ., i.e. we found an infinite path.

Corollary 2.4.5. The implication between ADS, EM and CAC for trees are strict.

Proof. CAC for trees does not imply ADS nor EM because, on one hand, by Corol-
lary 2.3.5, it does not imply AMT nor RWKL, and on the other hand, ADS implies
AMT ([HSS09, Theorem 4.1]) and EM implies RWKL ([BPS17, Theorem 2.11] and
[FT16, Theorem 5.2]).

2.5 TAC, lowness and hyperimmunity
Binns et al. in [BKHL+14] and Conidis [Con] respectively studied the reverse math-
ematics of CAC for trees and TAC. Since CAC for trees is computably equivalent
to TAC and this equivalence also holds in reverse mathematics over RCA0 + BΣ0

2,
the analysis of CAC for trees and TAC is very similar. For example, Binns et al.
[BKHL+14, Theorem 6.4] proved that for any fixed low set L, there is a com-
putable instance of CAC for trees with no L-computable solution, while Conidis

80

2.5 TAC, lowness and hyperimmunity

[Con] proved the existence of a computable instance of TAC whose solutions are
all of hyperimmune degree. In this section, we prove a general statement regarding
TAC (Theorem 2.5.1) and show that it encompasses both results.

Theorem 2.5.1. Let (An)n∈N be a uniformly ∆0
2 sequence of infinite ∆0

2 sets.
There is a computable instance of TAC such that no An is a solution.

Proof. First, for any n, let en be the index of An, i.e. Φ∅′
en = An. We also write

An[s] := Φ
∅′[s]
en [s].

Idea. We are going to construct a tree T ⊆ 2<N, such that for each n ∈ N, there
is σn ∈ An verifying σn /∈ T or σn ∈ T ∧ ∀∞τ ∈ T, σn ≺ τ . These requirements
are respectively denoted Rn and Sn, and An cannot be an infinite antichain of T
if one of them is met.

The sequence (σn) is constructed via a movable marker procedure, with steps s
and sub-steps e < s. At each step s we are going to manipulate an approximation
σs
n of σn, and variables σ̂s

n that will help us keep track of which requirement is
satisfied by σs

n.
Construction. At the beginning of each step s, let Ts be the approximation

of the tree T defined by Ts := Ts−1 ∪ {τs · 0, τs · 1} where τs is the leftmost (for
example) leaf of Ts−1 such that τs < σ̂s

s−1. For s = 0, we let T0 := {ε}.
At step s, sub-step e, let σs

e be the string whose code is the smallest in the
uniformly computable set {τ ∈ Ae[s]�s : (τ ∈ Ts ∧ τ < σ̂s

e−1) ∨ τ /∈ Ts} with
σ̂s
−1 := ε and σs

e is undefined when the set is empty.

Besides, define σ̂s
e :=

{
σs
e if σs

e ∈ Ts (and therefore σs
e < σ̂s

e−1)

σ̂s
e−1 otherwise

Verification. By induction on e, we prove that σe := lims σ
s
e exists and is an

element of Ae, also we prove σ̂e := lims σ̂
s
e exists, and σe satisfies Re or Se.

Suppose we reached a step r such that for all e′ < e the values of σr
e′ and σ̂r

e′

have stabilized. And thus, for any step s > r, as τs < σ̂s
s−1 < σ̂s

e−1 = σ̂e−1, the tree
will always be extended with nodes above σ̂e−1, implying only a finite part of the
tree is not above σ̂e−1.

Now suppose k is the smallest code of a string τ such that (τ ∈ T ∧ τ <
σ̂e−1) ∨ τ /∈ T . Such a string exists because Ae is infinite, whereas the set of
strings in T that are below σ̂e−1 is not. If τ ∈ T , then ∃x,∀y > x, τ ∈ Ty,
otherwise define x := 0. Since Ae is ∆0

2, there exists s > max{k + 1, r, x} such
that Ae[s]�k+1 has stabilized i.e. ∀t > s,Ae[t]�k+1 = Ae[s]�k+1. Thus σs

e = τ because
τ ∈ Ae�k+1 = Ae[s]�k+1 ⊆ Ae[s]�s. This ensures that for any t > s, σt

e = τ , i.e.
σe = τ .

81

Chapter 2 CAC for trees

Finally, we distinguish two cases. Either σe ∈ T and so ∃t, σt
e ∈ Tt, thus

∀u > t, σ̂u
e = σu

e . So Se is satisfied, as cofinitely many nodes of T will be above
σ̂e = σe. Or σe /∈ T , in which case, either ∀t, σt

e /∈ Tt, implying ∀t, σ̂t
e := σ̂t

e−1 and
thus Re is satisfied.

We now show how Theorem 2.5.1 relates to the result of Binns et al. in [BKHL+14,
Theorem 6.4], that is, the existence, for any fixed low set L, of a computable in-
stance of CAC for trees with no L-computable solution.

Lemma 2.5.2. For any low set P , the sequence of infinite P -computable sets
is uniformly ∆0

2.

Proof. Since P ′ 6T ∅′ we can ∅′-compute the function

f(e, x) =

{
ΦP

e (x) when ∀y 6 x,ΦP
e (y) ↓ and ∃y > x,ΦP

e (y) ↓= 1

1 otherwise

Now let Ae := {f(e, x) : x ∈ N}. If ΦP
e is total and infinite then Ae is equal to it,

so it is P -computable. Otherwise Ae is cofinite, and in particular it is infinite and
P -computable.

We are now ready to state the result of Binns et al. in [BKHL+14, Theorem
6.4], but for TAC.

Corollary 2.5.3. For any low set P , there exists a computable instance of TAC

with no P -computable solution.

Proof. Given P , we can use Lemma 2.5.2 to obtain a uniform sequence, on which
we apply Theorem 2.5.1.

The previous corollary is very useful to show that WKL0 0 TAC since there
exists a model of WKL0 below a low set. It also proves that RCA0+BΣ0

2 0 TAC, as
COMP is a model of BΣ0

2 but not TAC. The following corollary will be useful to
prove that the result of Binns et al. in [BKHL+14, Theorem 6.4] implies the result
of Conidis.

Corollary 2.5.4. There exist a PA degree P and an instance of TAC with no
P -computable solution.

Proof. It follows from the existence of a low PA degree by the low basis theorem,
see [JS72a, Corollary 2.2.].

82

2.5 TAC, lowness and hyperimmunity

The next proposition has two purposes. First, it will be used to show the
existence of a computable instance of TAC whose solutions are all of hyperimmune
degree (see Theorem 2.5.6). Second, it shows that, for any such instance, one
can choose two specific functionals to witness this hyperimmunity, without loss of
generality (see Corollary 2.5.8).

Proposition 2.5.5. Let T be an instance of TAC. For any set P of PA degree,
if T has no P -computable solution, then for any solution (σn)n∈N, the function
tT,(σn)n∈N

: n 7→ min{t : σn ∈ T [t]} or `(σn)n∈N
: n 7→ |σn| is hyperimmune.

Proof. By contraposition, suppose there exists a solution (σn)n∈N such that tT,(σn)n∈N

and `(σn)n∈N
are computably dominated by t and ` respectively. Then the set{

(τn)n∈N :
(τn)n∈N is an infinite antichain of T
tT,(τn)n∈N

6 t and `(τn)n∈N
6 `

}
is a non-empty Π0

1 class. It is non-empty because (σn)n∈N belongs to it, and to
show it is a Π0

1 class, it can be written as(τn)n∈N : ∀n,
∀m < n, τn|τm
τn ∈ T [t(n)]

|τn| 6 `(n)


Thanks to `, the number of elements at each level n of the tree associated to

this class is computably bounded by 2`(n), thus it can be coded by a Π0
1 class of

2N. Finally, since P is of PA degree, it computes an element of any Π0
1 class of the

Cantor space, hence the result.

Combining Corollary 2.5.4 and Proposition 2.5.5, we obtain the following theo-
rem from Conidis [Con].

Theorem 2.5.6 (Conidis [Con]). There is a computable instance of TAC such
that each solution is of hyperimmune degree.

Proof. Let P be of low PA degree. By using Corollary 2.5.3 we get a computable in-
stance T of TAC with no P -computable solution. Thus, by using Proposition 2.5.5
we deduce that, for any solution (σn), its function tT,(σn)n∈N

or `(σn)n∈N
is hyper-

immune. And (σn)n∈N computes both, since T is computable ; meaning it is of
hyperimmune degree.

83

Chapter 2 CAC for trees

Corollary 2.5.7. RCA0 ` TAC =⇒ HYP

In his direct proof of Theorem 2.5.6, Conidis [Con] constructed computable
instance of TAC and two functionals Φ,Ψ such that for every solution H, either
ΦH or ΨH is hyperimmune. Interestingly, Proposition 2.5.5 can be used to show
that Φ and Ψ can be chosen to be tT,− and `−, without loss of generality.

Corollary 2.5.8. For any instance T of TAC whose solutions are all of hyperim-
mune degree, at least one of the function tT,− or `− is a witness.

Proof. Let T be an instance of TAC whose solutions are all of hyperimmune degree,
and let (σn)n∈N be such a solution. By contradiction, if we suppose tT,(σn)n∈N

and
`(σn)n∈N

are both computably dominated, then by Proposition 2.5.5, T has a P -
computable solution. If we choose P to be computably dominated, then it cannot
compute a solution of hyperimmune degree, hence a contradiction.

Note that for every (computable or not) instance of TAC, there is a solution
(σn)n∈N such that `(σn)n∈N

is dominated by the identity function, by picking any
path, and building an antichain along it.

2.6 Equivalence between CAC for trees and SHER

We have seen in Section 2.4 that CAC for trees follows from both ADS and EM

over RCA0. The proof of CAC for trees from ADS used only one specific property
of the partial order (T,≺), that we shall refer to as semi-heredity. Dorais and
al. [DDH+16] introduced the principle SHER, which is the restriction of Ramsey’s
theorem for pairs to semi-hereditary colorings. In this section, we show that the
seemingly artificial principle SHER turns out to be equivalent to the rather natural
principle CAC for trees. This equivalence can be seen as one more step towards
the robustness of CAC for trees.

Definition 2.6.1. A coloring f : [N]2 → 2 is semi-hereditary for the color
i < 2 if

∀x<y<z, f(x, z) = f(y, z) = i =⇒ f(x, y) = i

The name “semi-heredity” comes from the contraposition of the previous defi-
nition ∀x<y<z, f(x, y) = 1− i =⇒ f(x, z) = 1− i ∨ f(y, z) = 1− i

84

2.6 Equivalence between CAC for trees and SHER

Definition 2.6.2 (SHER, [DDH+16]). For any semi-hereditary coloring f ,
there exists an infinite f -homogeneous set.

The first proposition consists essentially of noticing that, given a set of strings
T ⊆ N<N, the partial order (T,≺) behaves like a semi-hereditary coloring. The
whole technicality of the proposition comes from the definition of an injection
ψ : N → T with some desired properties.

Proposition 2.6.3. RCA0 ` SHER =⇒ CAC for c.e. trees and
CAC for c.e. trees 6c SHER

Proof. Let T ⊆ N<N be an infinite c.e. tree. First, let ϕ : N<N → N the bijection
x0 · . . . · xn−1 7→ px0

0 × . . . × p
xn−1

n−1 − 1 where pk is the kth prime number. Define
ψ : N → T by letting ψ(n) be the least σ ∈ T (in order of apparition) such that
φ(σ) is bigger than φ(ψ(0)), φ(ψ(1)), . . . , φ(ψ(n− 1)). Note that, by construction,
the range of ψ is infinite and computable. Moreover, if σ ≺ τ , then ϕ(σ) < ϕ(τ),
hence ψ−1(σ) < ψ−1(τ). Also, note that the range of ψ is not necessarily a tree.

Let f : [N]2 → 2 be the coloring defined by f({x, y}) = 1 iff x <N y and
ψ(x) ≺ ψ(y) coincide. Let us show that f is semi-hereditary for the color 1.
Suppose we have x < y < z and that f(x, z) = f(y, z) = 1, i.e. letting σ :=

ψ(x), τ := ψ(y), ρ := ψ(z) then we have σ ≺ ρ and τ ≺ ρ, thus either σ ≺ τ or
τ ≺ σ. But since x < y, i.e. ψ−1(σ) < ψ−1(τ), only σ ≺ τ can hold due to the
above note, meaning f(x, y) = 1.

By SHER applied to f , there is an infinite f -homogeneous set H. If it is homo-
geneous for the color 0, then the set ψ(H) corresponds to an infinite antichain of
T . Likewise, if it is homogeneous for the color 1, then the set ψ(H) is an infinite
path of T .

We now prove the converse of the previous proposition.

Definition 2.6.4. Given a coloring f : [N]2 → k, a set A := {a0 < a1 <

. . .} ⊆ N is weakly-homogeneous for the color i < k if ∀j, f(aj, aj+1) = i

Before proving Proposition 2.6.6, we need a technical lemma.

Lemma 2.6.5 (RCA0). Let f : [N]2 → 2 be a semi-hereditary coloring for the
color i < 2. For every infinite set A := {a0 < a1 < . . .} which is weakly-
homogeneous for the color i, there is an infinite f -homogeneous subset B ⊆ A.

85

Chapter 2 CAC for trees

Proof (Dorais). We first show that any aj falls in one of these two categories:
1. ∀k > j, f(aj, ak) = i

2. ∃` > j,
(
∀k ∈ Kj, `J, f(aj, ak) = i ∧ ∀k > `, f(aj, ak) = 1− i

)
Indeed, for any ` > j such that f(aj, a`) = i, by semi-heredity, f(aj, a`−1) = i. So
with a finite induction we get ∀k ∈ Kj, `K, f(aj, ak) = i.

There are now two possibilities. Either there are finitely many aj of type 2,
and so by removing these elements, the resulting set is f -homogeneous for the
color i. Otherwise there are infinitely many aj of type 2, in which case one can
define an infinite f -homogeneous subset for color 1 − i using BΣ0

1(A) as follows:
due to the observation above, “aj is of type 2” is equivalent to the Σ0

1(A) formula
∃` > j, f(aj, a`) = 1−i. Thus, given a finite set of type 2 elements {aj0 , . . . , ajk−1

},
by BΣ0

1(A) there is b > max{j0, . . . , jk−1}, and so jk is defined as the smallest
integer jk such that jk > b and f(ajk−1

, ajk) = 1− i.

Proposition 2.6.6. RCA0 ` CAC for trees =⇒ SHER and
SHER 6c CAC for trees

Proof. Let f : [N]2 → 2 be a semi-hereditary coloring for the color i < 2. We
begin by constructing a tree T ⊆ N<N defined as T := {σn : n ∈ N}, where σn is
the unique string which is:

1. strictly increasing (as a function), with last element n
2. weak-homogeneous for the color i, i.e. ∀k < |σn| − 1, f(σn(k), σn(k + 1)) = i

3. maximal as a weak-homogeneous set, i.e. ∀y < σn(0), f(y, σn(0)) = 1− i and
∀j < |σn|−1,∀y ∈ Kσn(j), σn(j+1)J, f(σn(j), y) = 1−i∨f(y, σn(j+1)) = 1−i

To ensure existence, uniqueness, and that T is a tree, we prove σn is obtained via
the following effective procedure. Start with the string n. If the string s0 · . . . · sm
has been constructed, then look for the biggest integer j < s0 such that f(j, s0) = i.
If there is none, the process ends. Else, the process is repeated with the string
j · s0 · . . . · sm.

The string obtained is maximal by construction. It is unique, because at each
step, if there are two (or more) integers j0 < j1 smaller than s0 and such that
f(j0, s0) = f(j1, s0) = i, then by semi-heredity we have f(j0, j1) = 1. This means
we will eventually add j0 after j1. In particular, the string contains all the j < n

such that f(j, n) = i. Moreover, this shows T is a tree, since the procedure is the
same at any point during construction.

Now we can apply CAC for trees to T , leading to two possibilities. Either there
is an infinite path, which is a weakly-homogeneous set for the color i thanks to

86

2.6 Equivalence between CAC for trees and SHER

condition 2. And so apply Lemma 2.6.5 to obtain a f -homogeneous set for the
color i.

Or there is an infinite antichain, which is of the form (σnj
)j∈N. Let us show the

set H := {nj : j ∈ N} is f -homogeneous for the color 1− i. Indeed, if f(ns, nt) = i

for some s < t, then ns ∈ σnt , since σnt contains all the elements y < nt such
that f(y, nt) = i. But then σns ≺ σnt , contradicting the fact that (σnj

)j∈N is an
antichain.

We end this section by studying RT2
2 in relation with 3-variable forbidden pat-

terns. As explained in the introduction, there are three basic 3-variable for-
bidden patterns, yielding the notions of semi-heredity, semi-ancestry, and semi-
transitivity, respectively. These forbidden patterns induce Ramsey-like statements
of the form “for any 2-coloring of pairs, there exists an infinite set which avoids
some kind of forbidden patterns”. This statement applied to semi-transitivity
yields a consequence of the Erdős-Moser theorem, known to be strictly weaker
than Ramsey’s theorem for pairs over RCA0. We now show that the two remaining
forbidden patterns yield statements equivalent to RT2

2. This completes the pic-
ture of the reverse mathematics of Ramsey-like theorems for 3-variable forbidden
patterns.

Definition 2.6.7. A coloring f : [N]2 → 2 has semi-ancestry for the color
i < 2 if

∀x<y<z, f(x, y) = f(x, z) = i =⇒ f(y, z) = i

Before proving RT2
2 from the Ramsey-like statement about semi-ancestry over

RCA0, we need to prove that this statement implies BΣ2. This is done by proving
the following principle.

Statement 2.6.8 (D2
2). Every ∆0

2 set admits an infinite subset in it or its
complement.

Proposition 2.6.9. The statement “for any 2-coloring of pairs, there exists
an infinite set which has semi-ancestry for some color” implies D2

2 over RCA0.

Proof. Let A be a ∆0
2 set whose approximations are (At)t∈N. We define the coloring

f(x, y) := χAy(x), and use the statement of the proposition to obtain an infinite
set B that has semi-ancestry for some color.

87

Chapter 2 CAC for trees

If B has semi-ancestry for the color 1, then ∀x<y<z ∈ B, x ∈ Ay ∧ x ∈ Az =⇒
y ∈ Az. Now either B ⊆ A and we are done. Or ∃x ∈ A ∩ B, which means
∀∞y ∈ B, x ∈ Ay, implying that ∀∞y > x ∈ B, ∀z > y ∈ B, y ∈ Az by semi-
ancestry, i.e. ∀∞y > x ∈ B, y ∈ A. So we can compute a subset H of B which is
infinite and such that H ⊆ A.

This argument also works when B has semi-ancestry for the color 0, we just
need to switch A and A, as well as ∈ and /∈, when needed.

Corollary 2.6.10. The statement “for any 2-coloring of pairs, there exists an
infinite set which has semi-ancestry for some color” implies BΣ0

2 over RCA0.

Proof. Immediate, since RCA0 ` D2
2 =⇒ BΣ0

2, see [CLY10, Theorem 1.4].

Proposition 2.6.11. The statement “for any 2-coloring of pairs, there exists
an infinite set which has semi-ancestry for some color” implies RT2

2 over RCA0

and over the computable reduction.

Proof. Let f : [N]2 → 2 be a coloring. We can apply the statement to obtain an
infinite set A which has semi-ancestry for the color i, i.e. ∀x<y<z ∈ A, f(x, y) =

i ∧ f(x, z) = i =⇒ f(y, z) = i. There are two possibilities. Either there exists
a ∈ A such that ∃∞b > a ∈ A, f(a, b) = i, in which case all such elements b form
an infinite f -homogeneous set due to the property of A. Otherwise any a ∈ A

verifies ∀∞b > a, f(a, b) = 1− i, i.e. all the elements of A have a limit color equal
to 1− i for the coloring f�[A]2 . Thus we can use BΣ0

2 (Corollary 2.6.10) to compute
an infinite homogeneous set (see [DHR20, Proposition 6.2]).

The proof that the Ramsey-like statement about semi-heredity implies Ramsey’s
theorem for pairs is indirect, and uses ADS.

Proposition 2.6.12. The statement “for any 2-coloring of pairs, there exists
an infinite set which is semi-hereditary for some color” implies ADS over RCA0

and over the computable reduction.

Proof. Let L = (N, <L) be a linear order. Let f : [N]2 → 2 be the coloring
defined by f({x, y}) = 1 iff <L and <N coincide on {x, y}. By the statement of
the proposition, there is an infinite set H on which the coloring is semi-hereditary
for some color i.

Before continuing, note that if there is a pair x < y ∈ H such that f(x, y) = 1−i
then ∀z > y ∈ H, f(x, z) = 1 − i. Indeed, either f(y, z) = 1 − i, in which case

88

2.7 Stable counterparts: SADS and CAC for stable c.e. trees

by transivity of <L we have f(x, z) = 1 − i. Or f(y, z) = i, in which case by
semi-heredity f(x, z) = 1− i, because otherwise it would imply that f(x, y) = i.

Now there are two possibilities. Either we have ∀∞x ∈ H, ∀y > x ∈ H, f(x, y) =

i, and so by getting rid of finitely many elements we obtain an infinite sequence
that is increasing if i = 1 or decreasing if i = 0. Or we have ∃∞x ∈ H, ∃y > x ∈
H, f(x, y) = 1 − i, in which case, by induction, we construct an infinite sequence
x0 <N x1 <N . . . ∈ H such that ∀n ∈ N, f(xn, xn+1) = 1 − i. If i = 0 it will
be increasing for <L , otherwise it will be decreasing for <L . The construction
starts by finding x0, y0 ∈ H such that x0 < y0 and f(x0, y0) = 1 − i. Suppose
the sequence x0, . . . , xn−1 ∈ H has already been constructed, and that we have
yn−1 ∈ H such that yn−1 > xn−1 and f(xn−1, yn−1) = 1 − i. We then look for a
x, y ∈ H such that y > x > yn−1 and f(x, y) = 1− i. By the previous remark we
have that f(xn−1, x) = 1− i, so we define xn := x and yn := y.

Corollary 2.6.13. The statement “for any 2-coloring of pairs, there exists an
infinite set which is semi-hereditary for some color” implies RT2

2 over RCA0.

Proof. This comes from the fact that RT2
2 ⇐⇒ S + SHER by definition (with S

denoting the statement in question). And we have RCA0 ` S =⇒ SHER by using
Proposition 2.6.12, Proposition 2.4.1 and Proposition 2.6.6.

Remark 2.6.14. Let S denote the statement “for any 2-coloring of pairs, there
exists an infinite set which is semi-hereditary for some color”. The proof that
S implies RT2

2 over RCA0 involves two applications of S. The first one is to
obtain an infinite set over which the coloring is semi-hereditary, and the second
one is to solve SHER using the fact that S implies ADS, which itself implies
SHER. It is unknown whether RT2

2 is computably reducible to S.

2.7 Stable counterparts: SADS and
CAC for stable c.e. trees

Cholak, Jockusch, and Slaman [CJS01] made significant progress in the under-
standing of Ramsey’s theorem for pairs by dividing the statement into a stable
and a cohesive part. We now recall the definition of a stable coloring and extend
it to linear orders.

89

Chapter 2 CAC for trees

Definition 2.7.1. A linear order L = (N, <L) is stable if it is of order type
(i.e. isomorphic to) ω + ω∗.

We call SRT2
k and SADS the restriction of RT2

k and ADS to stable colorings and
stable linear orders, respectively. Given a linear order L = (N, <L), the coloring
corresponding to the order is stable if and only if the linear order is of order type
ω + ω∗, or ω + k or k + ω∗. In particular, SRT2

2 implies SADS over RCA0.
In this section, we study the stable counterparts of CAC for trees and SHER, to

prove they are equivalent over RCA0. We show SADS implies CAC for stable c.e. trees

over RCA0. It follows in particular that every computable instance of CAC for stable c.e. trees

admits a low solution.

Definition 2.7.2 (Dorais [Dor12]). A tree T ⊆ N<N is stable when for every
σ ∈ T either ∀∞τ ∈ T, σ|τ or ∀∞τ ∈ T, σ 6 | τ

Note that any stable finitely branching tree admits a unique path.

Proposition 2.7.3. RCA0 ` SADS =⇒ CAC for stable c.e. trees

Remark 2.7.4. In the proof below, we use the statement that RCA0 `
SADS =⇒ BΣ0

2. This is because RCA0 ` SADS =⇒ PART ([HS07, Proposi-
tion 4.6]) and RCA0 ` PART ⇐⇒ BΣ0

2 ([CLY10, Theorem 1.2]).

Proof. Let T ⊆ N<N be an infinite c.e. tree that is stable.
Consider the total order <0, defined by σ <0 τ ⇐⇒ σ ≺ τ ∨(σ|τ ∧σ(d) < τ(d))

where d := min{y : σ(y) 6= τ(y)}. We show that it is of type ω + ω∗, i.e.

∀σ ∈ T, (∀∞τ ∈ Tσ <0 τ) ∨ (∀∞τ ∈ T, τ <0 σ)

So let σ ∈ T , there are two possibilities. Either ∀∞τ ∈ T, σ 6 | τ , meaning we
even have ∀∞τ ∈ T, σ ≺ τ , which directly implies ∀∞τ ∈ T, σ <0 τ .

Or ∀∞τ ∈ T, σ|τ . In this case, we consider all the nodes τ successors of a
prefix of σ but not prefix of σ, there are finitely many of them, because there are
finitely many prefixes of σ and no infinitely-branching node (WLOG, as otherwise
there would be a computable infinite antichain). So we can apply the pigeon-hole
principle, by using BΣ0

2, to deduce that there is a certain τ which has infinitely
many successors.

90

2.7 Stable counterparts: SADS and CAC for stable c.e. trees

Moreover, by stability of T , there cannot be another such node. Indeed, by
contradiction, if there were two such nodes τ and τ ′, then we would have ∃∞η ∈
T, η|τ , because the successors of τ ′ are incomparable to τ . And since τ already
verifies ∃∞η ∈ T, η � τ , contradicting the stability of T .

Therefore we have that ∀∞η ∈ T, η � τ , and so depending on whether τ <0 σ

or σ <0 τ , we obtain that ∀∞η ∈ T, η <0 σ or ∀η ∈ T, σ <0 η respectively. From
there we can apply SADS and the proof is exactly like in Proposition 2.4.1.

Corollary 2.7.5. CAC for stable c.e. trees admits low solutions.

Proof. This comes from the fact that any instance of SADS has a low solution, as
proven in [HS07, Theorem 2.11].

The proof that SHER follows from CAC for stable trees will use BΣ2. We there-
fore first prove that CAC for stable trees implies BΣ2 over RCA0.

Lemma 2.7.6. RCA0 ` CAC for stable trees =⇒ RT1
<∞

Proof. Let f : N → k be a coloring. There are two possibilities: Either ∃i <
k, ∃∞x, f(x) = i, in which case there is an infinite computable f -homogeneous
set. Otherwise ∀i < k, ∀∞x, f(x) 6= i and we show this leads to contradictions.
Consider the infinite f -computable tree

T := {ε} ∪
{
σ ∈ Inc :

∃i < k, σ is f -homogeneous for the color i
and ∀x < maxσ, (f(x) = i =⇒ x ∈ ranσ)

}
where Inc is the set of strictly increasing strings of N<N.

We claim that T is a stable tree, and more precisely that ∀σ ∈ T, ∀∞τ ∈ T, σ|τ .
Otherwise there would be some σ ∈ T f -homogeneous for the color i such that
∃∞τ ∈ T, σ ≺ τ . By definition of T , these elements τ are all f -homogeneous for the
color i and form an infinite path, contradicting the assumption that ∀∞x, f(x) 6= i.

Finally, every antichain in T is of size at most k, thus T is a stable tree with no
infinite path and no infinite antichain, contradicting CAC for stable trees.

Proposition 2.7.7. Under RCA0 the statement CAC for stable trees implies
SHER for stable colorings

Proof. Let f : [N]2 → 2 be a stable coloring, semi-hereditary for the color i. We
distinguish two cases. Either there are finitely many integers with limit color i,
meaning we can ignore them and use BΣ0

2 (Lemma 2.7.6) to compute an infinite

91

Chapter 2 CAC for trees

homogeneous set (see [DHR20, Proposition 6.2]). Otherwise, there are infinitely
many integers whose limit color is i, in which case we use the same proof as in
Proposition 2.6.6, but we must prove the tree T we construct is stable. So let σn
be a node of this tree.

Suppose first n has limit color i. Let p be sufficiently large so that f(n, p) = i.
As explained in Proposition 2.6.6, σp contains all the integers m < p such that
f(m, p) = i. It follows that n ∈ σp. Moreover, if n ∈ σp, then σn � σp. Thus,
∀∞p, σn ≺ σp.

Suppose now n has limit color 1− i, then since there are infinitely many integers
with limit color i, there is one such that p > n. In particular, σp verifies ∀∞τ ∈
T, σp ≺ τ . Thus, if σn ≺ σp then ∀∞τ ∈ T, σn ≺ τ , and if σn|σp then ∀∞τ ∈
T, σn|τ .

Proposition 2.7.8. Under RCA0 the statement SHER for stable colorings im-
plies CAC for stable c.e. trees

Proof. Let T ⊆ N<N be an infinite stable c.e. tree. The proof is the same as in
Proposition 2.6.3, but we must verify that the coloring f : [N]2 → 2 defined is
stable. Given x ∈ N, we claim that ∃i < 2,∀∞yf(x, y) = i. Since T is stable,
either ∀∞y, ψ(x) 6 | ψ(y) or ∀∞y, ψ(x)|ψ(y) holds. In the first case ∀∞y, f(x, y) = 1,
and in the second one ∀∞y, f(x, y) = 0. Thus the coloring is stable, and the proof
can be carried on.

Corollary 2.7.9. The following are equivalent over RCA0:
(1) CAC for stable trees

(2) CAC for stable c.e. trees

(3) SHER for stable colorings

2.8 Conclusion
The following figures sum up the relationships between the various statement ex-
plored in this paper. All implications hold both in RCA0 and over the computable
reduction, a red arrow means that the implication does not hold, and a double
arrow means the implication is strict.

92

2.8 Conclusion

CAC for trees SHER

CAC for c.e. trees

TAC+BΣ0
2 CAC for c.e. binary trees

2.6.6

2.6.3

Immediate

2.2.8

2.2.7

2.2.5 and 2.2.6

Figure 2.1: Implications proven in this chapter between CAC for trees and equiva-
lent statements

2-RAN 2-DNC ADS EM

TAC+BΣ0
2 CAC for trees

SAC TAC BΣ0
2

HYP

2.3.7
and
2.4.3

2.4.1
and
2.4.5

2.4.4
and
2.4.5

2.3.8 2.5.3

2.2.11

2.5.7

Figure 2.2: Implications between CAC for trees and the statements encoutered in
this chapter

2.8.1 Open questions
We have established in Theorem 2.2.4 the equivalence between TAC + BΣ0

2 and
other statements.

Open question 2. What is the first-order part of TAC?

Recall that, by Corollary 2.5.3, for every fixed low set X, there is a computable
instance of TAC with no X-computable solution. By computable equivalence,
this property also holds for CAC for trees. It is however unknown whether Corol-
lary 2.5.3 can be improved to defeat all low sets simultaneously.

Open question 3. Does every computable instance of CAC for trees admit a
low solution?

93

Chapter 2 CAC for trees

CAC for stable c.e. trees SADS

CAC for stable trees SHER for stable colorings

Figure 2.3: Implications between the stable version of CAC for trees and the state-
ments encoutered in this chapter

Note that by Corollary 2.7.5, any negative witness to the previous question
would yield a non-stable tree.

We have also seen by Proposition 2.3.12 that, for every computable instance T
of CAC for trees, every computably bounded DNC function relative to ∅′ computes
a solution to T . The natural question would be whether we can improve this result
to any DNC function relative to ∅′.

Open question 4. Is there some X such that, for every computable instance T
of CAC for trees, every DNC function relative to X computes a solution to T?

Note that in the case of a low set X, the answer is negative, as there exist
DNC2(X) functions of low degree.

Finally, recall from Remark 2.6.14 the following question:

Open question 5. Is RT2
2 computably reducible to the statement “for any 2-

coloring of pairs, there exists an infinite set which is semi-hereditary for some
color”?

94

CHAPTER 3

CROSS-CONSTRAINT BASIS
THEOREMS AND PRODUCTS OF

PARTITIONS

3.1 Introduction
In this chapter, we continue the study of reductions between Ramsey statements,
more precisely we focus on the case of computable reduction. We have established
with Theorem 1.3.44 that RTn

k+1 is not computably reducible to RTn
k . We would

now like to assess whether or not RTn
k+1 is reducible to finitely many instances of

RTn
k . To answer this question we use a technique first developed by Liu in [Liu23]

and build new basis theorems for spaces that are adapted to the study of products
of problems.

3.1.1 Products of problems
There exist various operators on mathematical problems, coming essentially from
the study of Weihrauch degrees. Among these, we shall consider two operators:

• The star of a problem P is the problem P∗ whose instances are finite tuples
(X0, . . . , Xn−1) of instances of P for some n ∈ N and whose solutions are
finite tuples (Y0, . . . , Yn−1) such that, for every i < n, Yi is a P-solution to
Xi.

• The parallelization of a problem P is the problem P̂ whose instances are
infinite sequences of P-instances X0, X1, . . . and whose solutions are infinite

95

Chapter 3 Cross-constraint basis theorems and products of partitions

sequences Y0, Y1, . . . such that, for every i ∈ N, Yi is a P-solution to Xi.
When considering a reduction P 6c Q

∗, one is allowed to use an arbitrarily large,
but finite number n of instances of Q to solve an instance X of P, where n depends
on X. However, the instances of Q must be simultaneously chosen, in that they
are not allowed to depend on each others’ solutions. This simultaneity prevents
from using the standard color blindness argument, and motivates the following
question:

Question 12. Given n, k > 1, does RTn
k+1 6c (RT

n
k)

∗ hold?

The case n = 1 is not interesting since RTn
k is computably true, but was studied

in the context of Weihrauch degrees by Dorais et al [DDH+16], Hirschfeldt and
Jockusch [HJ16], and Dzhafarov and al [DGH+20]. The first interesting case for
computable reduction is then n = 2. Let us first illustrate why the technique
used to prove that RT2

k+1 66c RT
2
k fails when considering products. Patey [Pat16c,

Theorem 3.11] used an analysis based on preservation of hyperimmunities to prove
that for every k > 1, every (k+1)-tuple of hyperimmune functions g0, . . . , gk, and
every computable instance X of RTn

k , there exists a solution Y such that at least
two among the hyperimmune functions remain Y -hyperimmune, and that it is not
the case for computable instances of RTn

k+1. This property fails when considering
the star operator, as the following lemma shows:

Lemma 3.1.1 (Cholak et al [CDHP20]). There exist 4 hyperimmune functions
g0, . . . , g3 and two computable colorings f0, f1 : [N]2 → 2 such that for every
infinite f0-homogeneous set H0 and every infinite f1-homogeneous set H1, at
most one gi is H0 ⊕H1-hyperimmune.

Proof. Indeed, consider a ∆0
2 4-partition A0 t · · · t A3 = N such that for every

i < 4, Ai is hyperimmune. For every i < 4, gi is the principal function of Ai. Let
f0, f1 be computable instances of RT2

2 such that for every x, limy f0(x, y) = 1 iff
x ∈ A0 ∪ A1 and limy f1(x, y) = 1 iff x ∈ A0 ∪ A2. Every infinite f0-homogeneous
set H0 is either included in A0∪A1 or in A2∪A3, and every infinite f1-homogeneous
set H1 is either included in A0 ∪ A2 or in A1 ∪ A3.

Note that if a set H ⊆ Ai ∪ Aj for some i < j < 4, then pH dominates each
gk for k ∈ {0, 1, 2, 3} − {i, j}, in which case none of those gk are H-hyperimmune.
Thus, either g0 and g1 or g2 and g3 are not H0-hyperimmune, and either g0 and
g2, or g1 and g3 are not H1-hyperimmune. It follows that at most one of the gi is
H0 ⊕H1-hyperimmune.

96

3.2 Core ideas

For n, k > 2 we know that (SRTn
k)

∗ is strictly reducible to (RTn
k)

∗, more precisely
we know that RTn

k 66c (SRT
n
k)

∗. Indeed, on one hand, Jockusch [Joc72b, Theorem
5.1] showed there is an instance of RTn

k with no Σ0
n solution, on the other hand,

any instance of SRTn
k has a ∆0

n solution.
Liu [Liu23] proved that SRT2

3 66c (SRT2
2)

∗, answering a question by Cholak et
al [CDHP20]. His proof involved completely new combinatorics, which will be
presented in this chapter. We will also extend his result, give a complete answer
to Question 12, and prove that RTn

3 66c (RT
n
2)

∗ for every n > 2. Before presenting
Liu’s approach, note that the reduction holds when considering parallelization, but
for a completely different reason.

Lemma 3.1.2. For every n, k > 1, RTn+1
k 6c R̂T

n
2 .

Proof. By Brattka and Rakotoniaina [BR17, Corollary 3.30], WKL(n) 6c R̂Tn
2 ,

where WKL(n) is the problem whose instances are ∆0
n+1 approximations of infinite

binary trees, and whose solutions are infinite paths through the trees. It follows
that for every set X, there is an X-computable instance of R̂Tn

2 such that every
solution is of PA degree over X(n). By Cholak, Jockusch and Slaman [CJS01], for
every instance X of RTn+1

k , every PA degree over X(n) computes the jump of a
solution to X.

3.1.2 Notation
In the rest of the chapter, we fix r ∈ N, and use the following notations. For
N ∈ N and u ∈ {N, <N,6N,=N}, we let Xu(0) := 3u, Xu(1) := (2u)r and
Xu := Xu(0) × Xu(1). For simplicity, when u is omitted it means u := N, i.e.
X := 3N × (2N)r.

3.2 Core ideas
In this section, we give the general picture of a proof for separating a theorem from
another over computable reducibility. Then, we specialize the idea to Question 12
and explain the core ideas of Liu’s technique. Note that the terminology has been
freely altered from Liu’s original article.

97

Chapter 3 Cross-constraint basis theorems and products of partitions

3.2.1 Separating theorems
Given two problems P and Q, to prove that P 66c Q, one needs to construct an
instance XP of P whose solutions are difficult to compute, and, for every XP-
computable instance XQ of Q, a solution YQ to XQ which does not XP-compute
any solution to XP. The framework was used in its whole generality by Lerman,
Solomon, and Towsner [LST13], but all the currently known separations over RCA0

or computable reduction can be done by constructing a computable instance of P.
The construction of the instance of P can be done either by a priority con-

struction or by an effectivization of a forcing construction. In many cases, it is
constructed using the finite extension method, that is, an effectivization of Cohen
forcing. This will be the case in this document as well (see Proposition 3.5.11).

Given an Xp-computable instance XQ of Q, the solution YQ is usually built by
forcing, in a forcing notion (PXQ

,6). The solution has to satisfy two types of
properties:

• Structural properties: being a solution to XQ. These properties are gen-
erally ensured by the very definition of the notion of forcing.

• Computational properties: not computing a solution to XP. These prop-
erties are divided into countably many requirements, by considering each
Turing functional individually. Given a requirement Re, one must prove
that the set of conditions forcing Re is dense.

There is often a tension between the structural properties which provide some com-
putational strength, and the computational properties which require some weak-
ness. There is however some degree of freedom in the computational properties,
as they are parameterized by the instance XP of P on which we have the hand.

The idea, coming from Lerman, Solomon and Towsner [LST13], consists in build-
ing the instance XP considering each tuple (XQ, c,Re) at a time, where XQ is an
Xp-computable instance of Q, c is a forcing condition in (PXQ

,6), and Re is a
requirement. Given a partial approximation of XP and a tuple (XQ, c,Re), ask
whether there is an extension d 6 c forcing Φ

YQ
e to output enough bits of informa-

tion. If so, complete XP so that it diagonalizes against the functional. Otherwise,
there is an extension d 6 c forcing Φ

YQ
e to be partial. The counter-intuitive part

of this approach is that the satisfaction of the requirements is ensured by the con-
struction of XP instead of the construction of the solutions YQ to XP -computable
instances of Q.

As explained by Patey [Pat17], one can polish the previous construction, by
abstracting the construction steps of XQ to consider every operation with the same
definitional properties, yielding some kind of genericity property. For example, the

98

3.2 Core ideas

separation of the Erdős-Moser theorem and the Ascending Descending Sequence
from Ramsey’s theorem for pairs [LST13] were polished in [Pat17] and [Pat18]
to obtain hyperimmunity and dependent hyperimmunity, respectively. In this
document, the polishing step yields Γ-hyperimmunity (see Definition 3.5.9).

Separating Ramsey-type theorems
In the particular case of Ramsey-type theorems, there exists a well-established sub-
scheme of construction. Many Ramsey-type theorems are of the form “For every
k-coloring of the n-tuples of an infinite structure, there exists an infinite isomorphic
substructure over which all the n-tuples satisfy some properties”. In the case of
Ramsey’s theorem, the infinite structure is (N, <), and the property is homogene-
ity, but one can consider weaker properties, such as transitivity, in which case one
obtains the Erdős-Moser theorem. One can also consider tree structures, yielding
the tree theorem [CHM09] or Milliken’s tree theorem [AdCD+24]. These theo-
rems are usually proven by induction, by constructing so-called pre-homogeneous
substructures. In the case of Ramsey’s theorem:

Definition 3.2.1. A set H ⊆ N is pre-homogeneous for a coloring f :

[N]n+1 → k if ∀~x ∈ [H]n,∀z>y>max ~x, f(~x, y) = f(~x, z)

Although pre-homogeneity is the natural notion to consider from a combinatorial
viewpoint, the computability-theoretic practice has shown the utility of the weaker
notion of cohesiveness. It establishes a bridge between computable instances of
RTn+1

k and ∆0
2 instances of RTn

k , and can be seen as some sort of “delayed pre-
homogeneity”. Indeed, given a coloring f : [N]n+1 → k, one can consider the
sequence of sets ~R := 〈R~x,z : ~x ∈ [N]n, z < k〉 defined by R~x,z := {z ∈ N : f(~x, z) =

y}. Thus, for an infinite ~R-cohesive set C, the coloring f restricted to [C]n+1 is
stable. This induces a ∆0

2(C) coloring f̂ : [C]n → k.
Cohesiveness has almost no computational power. Indeed, by delaying pre-

homogeneity, the statement becomes about the jump of sets. More precisely,
COH is computably equivalent to the statement “For every ∆0

2 infinite binary
tree, there exists a ∆0

2 path” (see Belanger [Bél22]). Most of the properties used to
separate Ramsey-type statements are preserved by COH. This phenomenon can
be explained by the fact that every set can be made ∆0

2 without affecting too much
the ground model (see Towsner [Tow15]). This will also be the case in this chapter
with Theorem 3.5.16. Because of this, Question 12 (for n = 2) becomes a question

99

Chapter 3 Cross-constraint basis theorems and products of partitions

about separating ∆0
2 instances of RT1

k+1 from finite products of ∆0
2 instances of

RT1
k.

More generally, given two Ramsey-type statements Pn, Qn parameterized by the
dimension of the n-tuples, the question of Pn+1 6c Qn+1 is often reduced to the
corresponding question with ∆0

2 instances of Pn and Qn. The experience shows that
almost all the known separations consist in actually constructing a ∆0

2 instance of
Pn which defeats not only all the ∆0

2 instances of Qn, but all the instances of Qn,
with no effectiveness restriction (see [Pat16c, Pat16b] for examples). The previous
remark about Towsner’s work shows that this apparently stronger diagonalization
is often without loss of generality. This will also be the case in this chapter, and
the ∆0

2 instance of RT1
k+1 will defeat all the finite products of instances of RT1

k

(Theorem 3.3.11).
Building a single instance of RT1

k+1 which defeats simultaneously uncountably
many instances of (RT1

k)
∗ raises new difficulties, as the sequence of all tuples

(XQ, c,Re) is not countable anymore. Thankfully, we shall see that there exists a
single countable notion of forcing (P,6) such that PX ⊆ P for every Q-instance
X. Moreover, given a condition c ∈ P, the class I(c) of all Q-instances X such
that c ∈ PX is a compact class. One will exploit this compactness to defeat all
Q-instances X ∈ I(c) simultaneously.

3.2.2 Cross-constraint techniques

The setting is therefore the following: in order to prove that Pn+1 66c Qn+1, one
builds a ∆0

2 instance X of Pn such that, for every instance X̃ of Qn, there is a
Qn-solution Ỹ to X̃ which does not compute any Pn-solution to X.

The instance X of Pn is built by an effectivization of Cohen forcing. For example
to prove that RT2

k+1 66c (RT
2
k)

∗, we will build a ∆0
2 instance f of RT1

k+1 using an
increasing sequence of (k + 1)-valued strings σ0 ≺ σ1 ≺ . . . and let f be the limit
of this sequence.

Let (P,6) be a countable notion of forcing used to build solutions to every
instance of Qn. At stage s, assuming the Cohen condition σs has been defined,
consider the next pair (c,Re) where c ∈ P and Re is a requirement saying that ΦG

e

is not a solution to the Pn-instance. Recall that I(c) is the class of all Q-instances
X such that c ∈ PX , and consider the class C ⊆ domPn × I(c) of all pairs (X, X̃)

such that there is an extension d 6 c with X̃ ∈ I(c) forcing ΦG
e to be partial or a

Pn-solution to X. There are two cases:

100

3.3 General framework

• Case 1: the class C is left-full below σs, that is, for every instance X of Pn

extending σs, there exists a Qn-instance X̃ such that (X, X̃) ∈ C. Then, by
some appropriate basis theorem which depends on the combinatorics of Pn

and Qn, there exist multiple pairs (X0, X̃0), . . . , (Xk−1, X̃k−1) in C such that
X0, . . . , Xk−1 are incompatible, in the sense that there is no set which is
a solution to all these Pn-instances simultaneously, while X̃0, . . . , X̃k−1 are
compatible as Qn-instances. Then, by building a solution to the Qn-instance
which will be simultaneously a solution to X̃0, . . . , X̃k−1, this forces ΦG

e to
be partial, hence to satisfy Re.

• Case 2: the class C is not left-full below σs. Then, there exists a Pn-instance
X extending σs such that, for every Qn-instance X̃ ∈ I(c), c forces ΦG

e not to
be a Pn-solution to X. By compactness of I(c), an initial segment σs+1 ≺ X

is sufficient to witness this diagonalization, hence to satisfy Re.
The general idea of cross-constraint techniques takes its roots in Liu’s proof of

separation of Ramsey’s theorem for pairs from weak König’s lemma [Liu12], in
a slightly different setting. Indeed, Pn+1 was WKL, which is known to admit a
maximally difficult instance, so only Qn was built. In that article, he considered
the class C of all pairs (f, X̃) such that f is a partial function with finite support,
and X̃ ∈ I(c) is an instance of RT1

2.

3.3 General framework
In this section, we define the fundamental notions of left-full cross-tree and prove
the main theorems parameterized by the cross-constraint ideals. The basis theo-
rems proven in Section 3.4 will show the existence of cross-constraint ideals with
various computability-theoretic properties, and will be used to answer the main
question in Section 3.5.3.

3.3.1 Cross-trees
When considering Π0

1-classes for the space X , it is natural to consider cross-trees
which play a role analogous to binary trees in the case of the Cantor space.

We extend the prefix relation on strings 4 to tuples of strings, in the natural
way. More precisely, for any n ∈ N, given integers k0, . . . , kn−1, and two tuples
σ := (σ0, . . . , σn−1), τ := (τ0, . . . , τn−1) ∈

∏
i<n k

<N
i , we have σ 4 τ if and only if

101

Chapter 3 Cross-constraint basis theorems and products of partitions

∀i < n, σi 4 τi. For any k ∈ N, the empty string of k<N is denoted by ε, and we
abuse the notation to also denote any tuple (ε, . . . , ε).

Moreover we define its cylinder by [σ] := [σ0]× . . .× [σn−1], and its length by
|σ| := max{|σi| : i < n}.

Definition 3.3.1. A class P ⊆ X is Π0
1 if there is a c.e. set W ⊆ X<N such

that
P =

⋃
χ∈W

[χ]

A cross-tree is a set T ⊆ X<N which is downward-closed for the prefix relation
4, and such that ∀(ρ, σ) ∈ T, ∀i<j<r, |σi| = |σj| and |σ| 6 |ρ|. The height of T
is h(T) := max{|χ| : χ ∈ T}

The class of its (infinite) paths is defined as

[T] :=
{
(X,Y) ∈ X : ∀n, (X�n, Y�n) ∈ T

}
Moreover, given a string ρ ∈ X<N(0), we define the tree T [ρ] := {σ ∈ X<N(1) :

(ρ, σ) ∈ T}, which is finite since |σ| 6 |ρ|. A cross-tree T is said to be right-
pruned if ∀ρ ∈ X<N(0), T [ρ] is pruned, i.e. all the leaves of T [ρ] have length |ρ|.
Finally, for any N ∈ N we define T�N := {χ ∈ T : |χ| 6 N}.

Lemma 3.3.2. A class P ⊆ X is Π0
1 if and only if there is a computable

cross-tree T ⊆ X<N such that [T] = P.

Proof. Let T ⊆ X<N be a computable cross-tree. The set [T] is Π0
1 as its comple-

ment is the set
⋃

χ∈W [χ] where W := X<N − T is computable.
Now let P be a Π0

1 class whose complement is
⋃

(ρ,σ)∈W [ρ] × [σ]. Consider the
cross-tree T such that (ρ, σ) ∈ T ⇐⇒ ∀µ 4 ρ,∀τ 4 σ, (µ, τ) /∈ W [|ρ|] and |ρ| >
|σ|. It is computable and its paths are exactly the elements of P .

Remark 3.3.3. In the rest of the chapter, every notion or proposition related
to a class P ⊆ X , also holds for a computable cross-tree T ⊆ X<N instead, by
considering its associated class [T].

3.3.2 Left-fullness
In this section, we define a notion of largeness such that, any Π0

1-class that satisfies
it contains multiple members satisfying some constraints. A key factor also lies in

102

3.3 General framework

the fact that the complexity of this notion is only Π0
1.

Definition 3.3.4. A class P ⊆ X is left-full below (ρ, σ) ∈ X<N if

∀X ∈ [ρ],∃Y ∈ [σ], (X,Y) ∈ P

Moreover, for any integer N ∈ N, we say that a finite tree T ⊆ X6N is left-full
below (ρ, σ) ∈ T if ∀(µ, τ) ∈ `(T), |µ| = N , and for every µ ∈ XN(0) extending
ρ, there is some τ ∈ XN(1) extending σ, such that (µ, τ) ∈ T .
We simply say “left-full” to signify “left-full below (ε, ε)”.

The above definition for finite trees is motivated by the following lemma. In
particular it shows that T is left-full below (ρ, σ) if and only if for any N ∈ N, T�N
is left-full below (ρ, σ).

Lemma 3.3.5. Let (ρ, σ) ∈ X<N, and P ⊆ X be a Π0
1 class, whose associated

computable cross-tree is T . The statement

P is left-full below (ρ, σ) (a)

is equivalent to

∀µ < ρ, ∃τ < σ, |τ | = |µ| and (µ, τ) ∈ T (b)

Moreover, if T is right-pruned, then the statement is equivalent to

∀µ < ρ, (µ, σ) ∈ T (c)

Proof. We first show (a) =⇒ (b). Let µ < ρ. Consider X ∈ [µ] ⊆ [ρ]. By (a), there
is Y ∈ [σ] such that (X,Y) ∈ P . Thus, in particular, we have that (µ, Y�|µ|) ∈ T .
Hence τ := Y�|µ| is the desired witness.

For the converse, let X ∈ [ρ]. We want to find Y ∈ [σ] such that (X,Y) ∈ P .
Consider the set S := {τ < σ : (X�|τ |, τ) ∈ T}. Since T is a cross-tree, S is a
finitely-branching cross-tree, with root σ. Moreover, it is infinite because of (b).
Thus, by König’s lemma, there is Y ∈ (2N)r such that ∀`, (X�`, Y�`) ∈ T . Hence
(X,Y) ∈ P .

Last, we show (c) ⇐⇒ (b). For all µ < ρ, if there is τ < σ such that |τ | =
|µ| and (µ, τ) ∈ T , then in particular (µ, σ) ∈ T since T is a cross-tree. As
for the converse, consider µ < ρ. We have (µ, σ) ∈ T , and since the cross-tree

103

Chapter 3 Cross-constraint basis theorems and products of partitions

{τ : (µ, τ) ∈ T} is pruned, it means there is τ < σ in it of size |µ| and such that
(µ, τ) ∈ T .

The following lemma shows how left-fullness is preserved when extending or
shortening the stems. Note that the first and second components do not play a
symmetric role.

Lemma 3.3.6. Let T be a computable cross-tree left-full below (ρ, σ) ∈ X<N.
Then

(a) ∀ρ̂ < ρ, ∀σ̂ 4 σ, T is left-full below (ρ̂, σ̂)

(b) For every n > |σ|, there are some ρ̂ < ρ and σ̂ < σ such that |σ̂| = n

and T is left-full below (ρ̂, σ̂)

Proof. Item (a) can be proven directly from the definition of left-full. For Item
(b), consider all the extensions of σ of length n, denoted σ0, . . . , σk−1 for some
k ∈ N, and define ρ0 := ρ. If T is left-full below (ρ0, σ0) then the assertion is
proven. Otherwise, by Lemma 3.3.5, it means ∃ρ1 < ρ0,∀τ < σ0, |τ | = |ρ1| =⇒
(ρ1, τ) /∈ T . Now we consider the pair (ρ1, σ1) to see if T is left-full below it. In
case it is not, use Lemma 3.3.5 as in the previous case. Proceed inductively like
this for every σj, where j < k. If at some point T is left-full below (ρj, σj) then
the assertion is proven. Otherwise, it means we have built a sequence of string
ρ0 4 . . . 4 ρk such that ∀j < k, ∀τ < σj, |τ | = |ρj+1| =⇒ (ρj+1, τ) /∈ T , and since
T is a tree we even have ∀j < k, ∀τ < σj, |τ | = |ρk| =⇒ (ρk, τ) /∈ T . But the
latter statement contradicts the fact that T is left-full below (ρ, σ), by considering
the string ρk in Lemma 3.3.5.

3.3.3 Parameterized theorems
Most of the computability-theoretic constructions of solutions to Ramsey-type
theorems are done by variants of Mathias forcing, with reservoirs belonging to
some Turing ideal containing only weak sets. The combinatorics of the statement
usually require some closure properties on this ideal. For example, to construct
solutions to computable instances of Ramsey’s theorem for pairs, or to arbitrary
instances of the pigeonhole principle, one requires the ideal to be a Scott ideal,
that is, a model of WKL (see [DJ09, SS95]). One must then prove some basis
theorem for WKL to construct Scott ideals with only weak sets.

104

3.3 General framework

In our case, we shall need another closure property, yielding the notion of cross-
constraint ideal. The main constructions of this section will be parameterized by
cross-constraint ideals, whose existence will be proven in Section 3.4.

Definition 3.3.7. Let X be an infinite set. A pair of instances (f, g) of RT1
k

is finitely compatible on X if for all color i < k the set X ∩ f−1(i)∩ g−1(i)

is finite. Whenever X = N, we simply say that (f, g) is finitely compatible.
Also, note that the negation of “finitely compatible” is “infinitely compatible”

Statement 3.3.8 (Cross-constraint principle (CC)). For any left-full cross-
tree T ⊆ X<N, there is a pair of paths (X i, Y i)i<2 such that (X0, X1) is finitely
compatible, and for all s < r, (Y 0

s , Y
1
s) is infinitely compatible.

The following notion of cross-constraint ideal is the equivalent of Turing ideal
for CC, so I is an ω-model of CC.

Definition 3.3.9. A cross-constraint ideal is a Turing ideal I ⊆ P(N)

such that, any instance T ∈ I of CC has a solution (X i, Y i)i<2 such that
(X0, Y 0)⊕ (X1, Y 1) ∈ I.

Lastly, we define a notion of hyperimmunity for k-colorings f , which is an in-
termediate notion between Cohen genericity and hyperimmunity. It implies in
particular that for every j < k, {x : f(x) 6= j} is hyperimmune, but in a depen-
dent way.

Definition 3.3.10. An instance f of RT1
k is hyperimmune relative to D ⊆

N if for every D-computable sequence of k-tuples ((Fn,0, . . . , Fn,k−1))n∈N of
mutually disjoint finite sets such that min

⋃
j<k Fn,j > n, there is m ∈ N such

that ∀j < k, Fm,j ⊆ f−1(j)

In other words, an instance f is hyperimmune relative to D if, for every D-
computable sequence g0, g1, . . . of partial k-valued functions with finite support,
such that ∀n ∈ N,min dom gn > n, then f is a completion of some gn. We are now
ready to prove our first parameterized theorem.

105

Chapter 3 Cross-constraint basis theorems and products of partitions

Theorem 3.3.11 (Liu [Liu23, Theorem 2.1]). Let M be a countable cross-
constraint ideal and let f ∈ X (0) be hyperimmune relative to every element of
M, then for any g ∈ X (1) there is a solution ~G of g which, for any Z ∈ M,
does not Z-compute any solution of f .

Proof. The set ~G is constructed by a variant of Mathias forcing, using conditions
of the form

(
(~Fα)α∈2r , ~A

)
where

• ~Fα is an r-tuple of finite sets g-homogeneous for the colors α, i.e. ∀s <

r, Fα,s ⊆ g−1
s (α(s))

• ~A is an r-tuple of infinite sets in M such that ∀α ∈ 2r,∀s < r,minAs >

maxFα,s

The idea is that we do not know in advance what the colors of homogeneity will
be for the solution being constructed, so we build all the possibilities in parallel,
with α indicating the colors, i.e. for any i < r, the set Fα,i is gi-homogeneous for
the color α(i).

A condition
(
(~Eα)α∈2r , ~B

)
extends another

(
(~Fα)α∈2r , ~A

)
if, for every α ∈ 2r

and every s < r, we have Eα,s ⊇ Fα,s, Bs ⊆ As, and Eα,s − Fα,s ⊆ As.
Every sufficiently generic filter F for this notion of forcing induces a family of

sets (GF
α,s)α∈2r,s<r defined by

GF
α,s =

⋃{
Fα,s :

(
(~Fα)α∈2r , ~A

)
∈ F

}
Given an initial segment Fα,s of a condition

(
(~Fα)α∈2r , ~A

)
, it is not necessarily

possible to find an extension
(
(~Eα)α∈2r , ~B

)
with |Eα,s| > |Fα,s|, since it might be

the case that As∩g−1
s (α(s)) is empty. Thus, for any sufficiently generic filter F , the

set GF
α,s might not be infinite. However, there must necessarily exist some α ∈ 2r

such that GF
α,s is infinite for every s < r. Given a condition c =

(
(~Fα)α∈2r , ~A

)
and

a coloring h ∈ X (1), define the set

Vh(c) := {α ∈ 2r : ∀s < r,As ∩ h−1
s (α(s)) 6= ∅}

of “valid” combinations. Note that if d 6 c, then Vh(d) ⊆ Vh(c). Moreover,
Vg(c) 6= ∅ for every condition c. A “valid” combination of a condition c allows us
to find an extension, as the following lemma shows.

Lemma 3.3.12. For all conditions c :=
(
(~Fα)α∈2r , ~A

)
, all β ∈ Vg(c) and all

s < r, there is an extension
(
(~Eα)α∈2r , ~B

)
such that |Eβ,s| > |Fβ,s|.

106

3.3 General framework

Proof. Let β ∈ Vg(c) and s < r. By definition of β consider n ∈ As ∩ g−1
s (α(s)).

Define (~Eα)α∈2r to be equal to (~Fα)α∈2r , except for Eβ,s := Fβ,s∪{n}. Accordingly,
define ~B to be equal to ~A, except for Bs := As−{0, 1, . . . , n}. Then

(
(~Eα)α∈2r , ~B

)
is a condition which satisfies the lemma.

Fix an enumeration of Turing functionals (Ψe)e∈N. For any e ∈ N, j < 3 and
Z ∈ M let

RZ
e,j := ΨZ⊕ ~G

e is not an infinite subset of f−1(j)

Lemma 3.3.13. For any 2r-tuple of integers (eα)α∈2r , any 2r-tuple of colors
(uα)α∈2r (where uα ∈ 3), any Z ∈ M, and any condition c, there is an
extension forcing

∨
α∈Vg(c)

RZ
eα,uα

.

Proof. Let c :=
(
(~Fα)α∈2r , ~A

)
be a condition, and define U(c) to be the Π0

1(~A)-class
whose elements are colorings g̃ ∈ X (1) such that

∀s < r,∀j < 2, (As ∩ g−1
s (j) = ∅ =⇒ As ∩ g̃s−1(j) = ∅)

in other words U(c) := {g̃ : Vg̃(c) ⊆ Vg(c)}. Note that it is non-empty since
g ∈ U(c). This ensure that the g̃ we consider later will have the same behavior as
g regarding ~A. Moreover, given α ∈ 2r, an r-tuple of finite sets ~G satisfies (~Fα, ~A)

if ∀s < r,Gs ⊇ Fα,s and Gs − Fα,s ⊆ As

For every n ∈ N consider the class Qn whose elements are colorings f̃ ∈ X (0)

such that

∃g̃ ∈ U(c),

∀α ∈ Vg(c),∀~G satisfying (~Fα, ~A)

if ~G is g̃-homogeneous for the colors α,

then ΨZ⊕ ~G
eα ∩Kn,+∞J⊆ f̃−1(uα)

Note that Qn is a Π0
1(~A) class uniformly in n. Indeed, the above formula is

Π0
1(~A), because by compactness, the existence of g̃ is equivalent to finding an

approximation in Xm(1) for any length m ∈ N. Moreover, the set Vg(c) depends
on g which might be of arbitrary complexity, but since it is finite, it does not affect
the complexity of the formula.

Case 1, ∃n,Qn = 3N. Thus fix such an n and consider the class P := {(f̃ , g̃) ∈
X : g̃ is a witness of f̃ ∈ Qn}. Since P is a left-full Π0

1(~A)-class and M is a
cross-constraint ideal, there are paths (X i, Y i)i<2 ∈ P2 such that

107

Chapter 3 Cross-constraint basis theorems and products of partitions

• (X0, X1) is finitely compatible
• for any s < r, (Y 0

s , Y
1
s) is infinitely compatible on As

• (X0, Y 0)⊕ (X1, Y 1) ∈ M
From the second item, define β ∈ 2r to be colors such that ∀s < r, (Y 0

s)
−1(β(s)) ∩

(Y 1
s)

−1(β(s)) ∩ As is infinite. Note that β ∈ VY0(c) ∩ VY1(c). Since Y 0, Y 1 ∈ U(c)

(they witness X0, X1 ∈ Qn respectively), then VY0(c) ∩ VY1(c) ⊆ Vg(c), so β ∈
Vg(c). For each s < r, let Bs = (Y 0

s)
−1(β(s)) ∩ (Y 1

s)
−1(β(s)) ∩ As, and define

~B := (B0, . . . , Br−1). We claim that ((~Fα)α∈2r , ~B) is the extension we are looking
for. Indeed, since (X i, Y i)i<2 ∈ P2, then for every ~G compatible with (Fβ, ~B), we
have ΨZ⊕ ~G

eβ
∩Kn,+∞J⊆ X0

−1(uβ)∩X1
−1(uβ). Since X0

−1(uβ)∩X1
−1(uβ) is finite,

the requirement RZ
eβ ,uβ

is satisfied, so
∨

α∈Vg(c)
RZ

eα,uα
is satisfied as well.

Case 2, ∀n,Qn 6= 3N.
In which case, for each n ∈ N, there is some fn /∈ Qn and `n ∈ N such that

∀g̃ ∈ U(c),

∃β ∈ Vg(c),∃ ~H satisfying (~Fβ, ~A),

~H is g̃-homogeneous for the colors β

and ΨZ⊕ ~H
eβ

∩Kn, `nJ* f−1
n (uβ)

This implies that there is an ~A-computable sequence of 3-tuples ((En,0, En,1, En,2))n∈N
of mutually disjoint finite sets such that

∀g̃ ∈ U(c),

∃β ∈ Vg(c),∃ ~H satisfying (~Fβ, ~A),

~H is g̃-homogeneous for the colors β

and Ψ
~A⊕ ~H
eβ

∩Kn, `nJ* En(uβ)

Indeed, for each n, the set Kn, `nJ can be partitioned into ({m : fn(m) = j})j<3, so
it is sufficient to search for a coloring satisfying the above properties, as the search
must end.

The coloring f is hyperimmune relative to ~A, because ~A ∈ M. Hence there is
some n ∈ N such that ∀j < 3, En,j ⊆ f−1(j). Moreover En,j = f−1(j)∩Kn, `nJ. So,
by considering g, we have

∃β ∈ Vg(c),∃ ~H satisfying (~Fβ, ~A),

~H is g-homogeneous for the colors β

and ΨZ⊕ ~H
eβ

∩Kn, `nJ* f−1(uβ)

108

3.3 General framework

Finally, the extension we are looking for is
(
{ ~Fα}α 6=β∈2r∪{ ~H}, ~A−{0, . . . ,max ~H}

)
.

This completes the proof of Lemma 3.3.13.

Let c0 be a condition such that Vg(c0) is minimal for inclusion. Let V := Vg(c0).
Let F be a sufficiently generic filter containing c0. In particular, V = Vg(c) for
every c ∈ F . By Lemma 3.3.12, for every α ∈ V and every s < r, GF

α,s is infinite.
Moreover, by Lemma 3.3.13, for every Z ∈ M, for every 2r-tuple of integers
(eα)α∈2r and every 2r-tuple of colors (uα)α∈2r , ~GF satisfies

∨
α∈V RZ

eα,uα
. By a

pairing argument, for every Z ∈ M, there is some α ∈ V such that Z⊕ ~GF
α does not

compute any infinite f -homogeneous set. Since M = {Z0, Z1, . . . } is countable, by
the infinite pigeonhole principle, there exists some α ∈ V such that for infinitely
many n ∈ N, Z0 ⊕ · · · ⊕ Zn ⊕ ~GF

α does not compute any infinite f -homogeneous
set. By downward-closure of this property under the Turing reduction, it holds for
every n. This completes the proof of Theorem 3.3.11.

Our first parameterized theorem has applications in terms of strong non-reducibility
between non-computable instances of RT1

k+1 and (RT1
k)

∗ (Theorem 3.5.19) and
non-reducibility between computable instances of SRT2

k+1 and (SRT2
k)

∗ (Theo-
rem 3.5.20). We now prove a second parameterized theorem which enables us
to prove separations between computable instances of Ramsey’s theorem for pairs.
Note that in the following theorem, the colorings g0, . . . , gr−1 are required to belong
to M, contrary to Theorem 3.3.11.

Theorem 3.3.14. Let M be a countable cross-constraint ideal such that M |=
COH and let f : N → 3 be hyperimmune relative to any element of M, then
for any r ∈ N and any g0, . . . , gr−1 : [N]2 → 2 in M, there is an infinite
gi-homogeneous sets Gi for every i < r, such that

⊕
i<rGi does not compute

any infinite f -homogeneous set.

Proof. First, consider the sequence of sets ~R := (Rx,j,i)x∈N,j<2,i<r defined byRx,j,i :=

{y : gi(x, y) = j}. This sequence is in M, because ∀i < r, gi ∈ M. And since
M |= COH, there is an infinite ~R-cohesive set C := {c0 < c1 < . . .} ∈ M. By
choice of ~R, for each i < r, the coloring gi�[C]2 is stable. Indeed, for x ∈ N and
i < r, there is exactly one j < 2 for which C ⊆∗ Rx,j,i, and so this implies that
limy∈C gi(x, y) = j.

Now, for i < r, let hi : N → 2, n 7→ limm gi(cn, cm), and ~h := (h0, . . . , hr−1).
By applying Theorem 3.3.11 to the hyperimmune function f and the colorings
~h ∈ X (1), there are infinite ~h-homogeneous sets ~H such that, for any Z ∈ M,

109

Chapter 3 Cross-constraint basis theorems and products of partitions

~H ⊕ Z does not compute an infinite f -homogeneous set. In particular this is true
for Z := C ⊕

⊕
i<r gi, and since for any i < r, the set Hi ⊕ C ⊕ gi computes an

infinite gi-homogeneous set Gi, we deduce that
⊕

i<rGi does not compute any
infinite f -homogeneous set.

3.4 Cross-constraint basis theorems

As mentioned before, the two main theorems of Section 3.3 are parameterized by
cross-constraint ideals, which are themselves built using iterated applications of the
cross-constraint principle (CC). In this section, we prove various basis theorems for
CC, namely, the ∆0

2, low, cone avoidance, and non-Σ0
1 preservation basis theorems.

The ∆0
2 and cone avoidance basis theorems for CC were previously proven by Liu

[Liu23], but we give a new proof of the cone avoidance basis theorem which more
similar to its classical counterpart for Π0

1 classes.

3.4.1 Conditions

The most famous basis theorems for Π0
1 classes are all proven using effective ver-

sions of forcing with binary trees. Similarly, all the basis theorems for CC in this
section will be proven with effective variants of the same notion of forcing that we
now describe.

Definition 3.4.1. For k ∈ N, ρ0, ρ1 ∈ k<N, and µ0, µ1 ∈ k6N such that
∀i < 2, ρi 4 µi. We say that (µ0, µ1) is completely compatible (respec-
tively completely incompatible) over (ρ0, ρ1), if ∀i ∈ Jn,mK, µ0(i) = µ1(i)

(respectively ∀i ∈ Jn,mK, µ0(i) 6= µ1(i)), where n := min{|ρ0|, |ρ1|} and
m := min{|µ0|, |µ1|}. In both cases, if n = 0 we simply say completely
(in)compatible.

110

3.4 Cross-constraint basis theorems

Definition 3.4.2. A condition-tuple for a class P ⊆ X is a tuple
(ρi, σi)i<2 ∈ X 2

<N such that P is left-full below (ρi, σi) for both i < 2, and
|ρ0| = |ρ1|. A condition-tuple (ρ̂i, σ̂i)i<2 for Q ⊆ X extends another (ρi, σi)i<2

for P ⊆ X , written (ρ̂i, σ̂i)i<2 6 (ρi, σi)i<2, if
1. Q ⊆ P
2. for both i < 2, (ρ̂i, σ̂i) < (ρi, σi)

3. (ρ̂0, ρ̂1) is completely incompatible over (ρ0, ρ1)

Remark 3.4.3. A pair (ρi, σi) of a condition-tuple is seen as a finite approxima-
tion of some (X i, Y i) ∈ P we wish to build, i.e. of an element in P ∩ [(ρi, σi)],
such that (X0, X1) is completely incompatible over (ρ0, ρ1).

3.4.2 Cross-constraint ∆0
2 basis theorem

The following ∆0
2 basis theorem is an effective analysis of the simplest known

combinatorial proof of the cross-constraint problem. It was proven by Liu [Liu23,
Lemma 2.2]. We provide the original proof as a warmup for the next basis theorems
and for the sake of completeness.

Theorem 3.4.4 (Liu [Liu23, Lemma 2.2]). Any left-full computable instance
T of CC has a solution (X i, Y i)i<2 such that (X0, Y 0)⊕ (X1, Y 1) 6T ∅′.

Proof. Let P := [T]. We build a ∅′-computable sequence of condition-tuples
(ρi0, σ

i
0)i<2 > (ρi1, σ

i
1)i<2 > . . ., such that, for i < 2 the functions X i :=

⋃
t ρ

i
t

and Y i :=
⋃

t σ
i
t are the desired witnesses. To simplify notation, we simply say

condition for condition-tuple.
Given s < r and a condition (ρit, σ

i
t)i<2, we want to extend the latter to (ρit+1, σ

i
t+1)i<2

such that (σ0
t+1,s, σ

1
t+1,s) is not completely incompatible over (σ0

t,s, σ
1
t,s).

If there is always such an extension, then the construction can be completed.
By Lemma 3.3.5, this search requires the use of ∅′ to check whether P is left-full
below (ρit+1, σ

i
t+1) or not (for each i).

Otherwise, there is some s < r and some condition (ρit, σ
i
t)i<2, such that, for any

extension (ρit+1, σ
i
t+1)i<2, we have that (σ0

t+1,s, σ
1
t+1,s) is completely incompatible

over (σ0
t,s, σ

1
t,s). In which case we say that (ρit, σ

i
t)i<2 excludes component s <

r. Nevertheless, by considering the following lemma, the construction can be
completed.

111

Chapter 3 Cross-constraint basis theorems and products of partitions

Lemma 3.4.5 (Liu [Liu23, Claim 2.3]). If a condition (ρi, σi)i<2 excludes
component s < r, then, for all i < 2, there is a coloring Y i

s ∈ 2N such that, for
every (ρ̂i, σ̂i) < (ρi, σi), if P is left-full below (ρ̂i, σ̂i) then ∀j ∈ Jn,mJ, σ̂i

s(j) =

Y i
s (j), where n := |σi

s| and m := |σ̂i
s|

Proof. Fix (ρi, σi)i<2 excluding component s < r and fix i < 2.
Suppose first that for cofinitely many j ∈ N, there exists a kj < 2 such that for

every (ρ̂i, σ̂i) < (ρi, σi) for which P is left-full, if |σ̂i
s| > j then σ̂i

s(j) = kj. Then let
Y i
s (j) := kj for j big enough, and let Y i

s (j) be of arbitrary value otherwise. This is
well-defined since by Lemma 3.3.6, there exist suitable extensions of every length.

Suppose now that for infinitely many j ∈ N, for every k < 2, there is a (ρ̂, σ̂) <
(ρi, σi) for which P is left-full and such that σ̂s(j) 6= k. Fix j > |σi

s|, and for each
k < 2, let (ρk, σk) < (ρi, σi) be an extension such that σk,s(j) 6= k.

Since we are working in a 3-valued realm, there exists a ρ̃ < ρ1−i of length greater
than max(|ρ0|, |ρ1|) such that both (ρ̃, ρ0) and (ρ̃, ρ1) are completely incompatible
over (ρ0, ρ1). Pick any pair (ρ̂1−i, σ̂1−i) < (ρ̃, σ1−i) for which P is left-full and
such that |σ̂1−i

s | > n, this is possible by Lemma 3.3.6. Let k := σ̂1−i
s (n). Then

(ρ̂1−i, σ̂1−i, ρk, σk) is an extension contradicting the fact that (ρi, σi)i<2 excludes
component s < r

If at some point in the construction the condition (ρit, σ
i
t)i<2 excludes the compo-

nents of I ⊆ r, then we restart the construction from the begining with (ρi0, σ
i
0)i<2 :=

(ρ0t , σ
0
t , ρ

0
t , σ

0
t). The lemma ensures that (Y 0

s , Y
1
s) will not be finitely compatible

for all s ∈ I, no matter the conditions selected for the sequence. And since r

is a standard integer, the construction can only be restarted a finite number of
times.

Remark 3.4.6. The fact that X i is an instance of RT1
3 whereas each Y i

s is
an instance of RT1

2 is exploited in the proof of Lemma 3.4.5, to ensure the
existence of a 3-valued string ρ̃ completely incompatible with two other strings
simultaneously.

Corollary 3.4.7. The class of all arithmetic sets is a cross-constraint ideal.

112

3.4 Cross-constraint basis theorems

3.4.3 Combinatorial lemmas
All the remaining basis theorems will involve some kind of first-jump control. They
will require a much more involved combinatorial machinery that we now develop.
These combinatorics are all due to Liu [Liu23], with a slightly different organization
and terminology.

Definition 3.4.8. For k ∈ N and m 6 n ∈ N, given chains ρ0, ρ1 ∈ k6m, a
total function ϕ : km → kn preserves incompatibility over (ρ0, ρ1) if

1. ∀µ ∈ km, ϕ(µ) < µ

2. For all µ0, µ1 ∈ km such that (µ0, µ1) < (ρ0, ρ1), if (µ0, µ1) is completely
incompatible over (ρ0, ρ1) then (ϕ(µ0), ϕ(µ1)) is completely incompatible
over (µ0, µ1)

Remark 3.4.9. Note that for ρ̂0, ρ̂1 ∈ k6n extending ρ0, ρ1 respectively, if ϕ
preserves incompatibility over (ρ0, ρ1) then it also preserves incompatibility
over (ρ̂0, ρ̂1).

The following two lemmas are purely technical ones, used only locally to obtain
the main combinatorial lemmas of this section.

Lemma 3.4.10 (Liu [Liu23, Lemma 4.3]). For any n 6 n′ 6 m ∈ N, ρ̂ ∈ 3m

extending ρ ∈ 3n, and any map ψ : 3n → 3n
′ preserving incompatibility over

(ε, ε) such that ψ(ρ) 4 ρ̂, there is a map ϕ : 3n → 3m extending ψ and
preserving incompatibility over (ε, ε), such that ϕ(ρ) = ρ̂.

Proof. To give an intuition, if we just wanted to show the existence of a map ϕ :

3n → 3m preserving incompatibility over (ε, ε), we could have taken the function
which maps η ∈ 3n to η · am−n where a := η(0).

Fix ρ, ρ̂ and ψ as in the statement of the lemma, and let τ be such that ψ(ρ)·τ =

ρ̂. For every a < 3, let τa ∈ 3m−n′ be defined by τa(x) = τ(x) + a − ρ(0) mod 3.
In particular, τρ(0) = τ and for every a 6= b, τa and τb are completely incompatible
over (ε, ε).

Let ϕ be the function ϕ′ ◦ ψ where ϕ′ maps η ∈ 3n
′ to η · τη(0). Note that

ϕ′ ◦ ψ(ρ) = ψ(ρ) · τρ(0) = ρ̂. Moreover, if µ, ν ∈ 3n
′ are completely incompatible,

then ψ(µ)(0) 6= ψ(ν)(0), hence τµ(0) and τν(0) are completely incompatible. It
follows that ϕ(µ) = ψ(µ) · τµ(0) and ϕ(ν) = ψ(ν) · τν(0) are completely incompatible
themselves.

113

Chapter 3 Cross-constraint basis theorems and products of partitions

Lemma 3.4.11 (Liu [Liu23, Lemma 4.4]). For n,N ∈ N and f : A →
P
(
XN(1)

)
a total function that is order-reversing for ⊆, where A := 3<N−3<n.

There is m ∈ N and a map ϕ : 3n → 3m preserving incompatibility over (ε, ε),
such that ∀ρ ∈ 3n,∀ν ∈ XN(1) either ∀ρ̂ < ϕ(ρ), ν ∈ f(ρ̂) or ν /∈ f(ϕ(ρ)).

Proof. We construct a finite sequence of integers (ns)s6p, for some p ∈ N, along
with a finite sequence of maps (ϕs : 3

n0 → 3ns)s6p preserving incompatibility over
(ε, ε).

For each ν ∈ XN(1) and ρ ∈ 3n there is a step to ensure that the map ϕ we
construct satisfies the requirement

Rν,ρ := ∀ρ̂ < ϕ(ρ), ν ∈ f(ρ̂) or ν /∈ f(ϕ(ρ))

Let n0 := n and ϕ0 : 3
n0 → 3n0 be the identity function. At step s < p, consider

ν ∈ XN(1) and ρ ∈ 3n. If ∀ρ̂ < ϕs(ρ), ν ∈ f(ρ̂) we are done by defining ns+1 := ns

and ϕs+1 := ϕs. Otherwise there is η extending ϕs(ρ) such that ν /∈ f(η). Define
ns+1 := |η|, and use Lemma 3.4.10 to find a map ϕs+1 : 3

n → 3ns+1 extending ϕs,
preserving incompatibility over (ε, ε), and such that ϕs+1(ρ) = η. So, under the
assumption made on f we have that ∀η̂ < η, f(η̂) ⊆ f(η), and thus ∀η̂ < η, ν /∈
f(η̂). Then as ϕs+1 extends ϕs, Rν,ρ is fulfilled.

Finally, define m := np and ϕ := ϕp. By the hypothesis made on the function f ,
for every ν ∈ XN(1), if ν ∈ f(ϕ(ρ)) for some ρ ∈ 3n, then ∀ρ̂ < ϕ(ρ), ν ∈ f(ρ̂)

The following definition should be understood in the light of the first-jump
control for Π0

1 classes. When trying to construct an infinite path through an
infinite binary tree T ⊆ 2<ω, one must ensure that at every step, the node is
extensible, that is, the branch below the node is infinite. Being extensible is a
Π0

1 property, and therefore to obtain good first-jump control, one must resort to
an overapproximation: Given a set A ⊆ 2<ω, instead of asking whether there is an
extensible node in T ∩A, one will ask whether there is a level in the tree such that
every node at this level belongs to A. Among the nodes at that level, at least one
must be extendible. If A is Σ0

1, then the former question is Σ0
2, while the latter is

Σ0
1.
One can use a different technique, and ask whether the Π0

1 class P of infinite
subtrees of T disjoint from A is empty. In particular, by considering S ⊆ T , the
pruned subtree of T containing only extendible nodes, since S 6∈ P , there is an
extendible node in S ∩ A. Here again, this overapproximation is Σ0

1.

114

3.4 Cross-constraint basis theorems

In the case of cross-constraint problems, a node (ρ, σ) is extensible in a cross-
tree T if T is left-full below (ρ, σ). The notion of T -sufficiency below is therefore
the counterpart of the Σ0

1 question above, mutatis mutandis.

Definition 3.4.12 (Liu [Liu23, Definition 4.22]). Given a tree T ⊆ X , and a
tuple (ρi, σi)i<2 ∈ X 2

<N, a set A ⊆ X 2
<N is T -sufficient over (ρi, σi)i<2 if, for

every infinite subtree S ⊆ T for which (ρi, σi)i<2 is a condition-tuple, there is
a tuple (ρ̂i, σ̂i)i<2 ∈ A ∩ S2 such that ∀i < 2, (ρ̂i, σ̂i) < (ρi, σi), and (ρ̂0, ρ̂1) is
completely incompatible over (ρ0, ρ1).

Remark 3.4.13. Note that (ρi, σi)i<2 is not a condition-tuple for T , because T
is not necessarily left-full below it. However, when it is the case, we will be
able to find extensions in A for which T is still left-full, see Lemma 3.4.15.

Note that if A is Σ0
1, then the statement “A is T -sufficient over (ρi, σi)i<2” is

Σ0
1(T). The combinatorics for the cross-constraint problem are more complicated

than the ones for weak König’s lemma, and one cannot simply consider the pruned
tree containing only extensible nodes. However, the following lemmas show that
one can consider a weakly pruned tree in which every node is almost extensible, in
the sense that every node can be extended into a node below which the cross-tree
is left-full.

The following lemma uses compactness to give a finite cross-tree version of T -
sufficiency. Recall that the notion of left-fullness was extended to finite trees,
which induces a notion of condition-tuple.

Lemma 3.4.14. Let T ⊆ X be a cross-tree. If A ⊆ X 2
<N is T -sufficient

over (ρi, σi)i<2 ∈ X 2
<N, then there is N ∈ N such that for every finite cross-

subtree S ⊆ T ∩ X6N for which (ρi, σi)i<2 is a condition-tuple, there is a
tuple (ρ̂i, σ̂i)i<2 ∈ A ∩ S2 such that ∀i < 2, (ρ̂i, σ̂i) < (ρi, σi), and (ρ̂0, ρ̂1) is
completely incompatible over (ρ0, ρ1).

Proof. Consider the class T of finite subtrees S ⊆ T whose leaves are all of the
same length, such that S is left-full below (ρi, σi) for both i < 2, and such that for
all tuple (ρ̂i, σ̂i)i<2 ∈ S2 which extends (ρi, σi) and such that (ρ̂0, ρ̂1) is completely
incompatible over (ρ0, ρ1), then (ρ̂0, ρ̂1) /∈ A. It forms a tree for the relation where
S0 6 S1 if and only if S1�h(S0) = S0.

There is no infinite path in T , otherwise it would contradict the assumption
that A is T -sufficient. Hence T is finite thanks to König’s lemma. In other words,

115

Chapter 3 Cross-constraint basis theorems and products of partitions

there is N ∈ N such that, for any finite subtree S ⊆ T ∩ X6N left-full below both
(ρi, σi), there is (ρ̂i, σ̂i) ∈ A ∩ S2 witnessing the T -sufficiency of A.

The following lemma is the desired combinatorial lemma.

Lemma 3.4.15 (Liu [Liu23, Subclaim 4.7]). Let T ⊆ X be a cross-tree that
is left-full below (ρi, σi)i<2 ∈ X 2

<N. If A ⊆ X 2
<N is T -sufficient over (ρi, σi)i<2

and closed under extensiona then there is a condition-tuple in A which extends
(ρi, σi)i<2.

aThat is to say, if (τ i, νi)i<2 ∈ A and ∀i < 2, (τ̂ i, ν̂i) < (τ i, νi), then (τ̂ i, ν̂i)i<2 ∈ A

Proof. Let N ∈ N witness Lemma 3.4.14, and for both i < 2 let Ai := 3<N−3N−|ρi|

For i < 2, define the maps

fi : Ai → P
(
XN−|σi|(1)

)
τ 7→

{
ν : (ρi · τ, σi · ν) ∈ T

}
And consider the map f : τ 7→ f0(τ) ∪ f1(τ).

Since T is left-full below (ρi, σi) for both i < 2, we have ∀τ, f(τ) 6= ∅. Indeed,
consider i < 2, by left-fullness, there is ν̃ such that |σi ·ν̃| = |ρi ·τ | and (ρi ·τ, σi ·ν̃) ∈
T . Since τ ∈ Ai, we deduce that |ρi · τ | > N , and since T is a tree, we have that
ν := ν̃�N−|σi| verifies (ρi · τ, σi · ν) ∈ T .

Moreover, each fi is order-preserving since T is a cross-tree, so f is also non-
decreasing. Thus we can apply Lemma 3.4.11 on f to obtain L ∈ N and a map
ψ : 3N−|ρ0| → 3L preserving incompatibility over (ρ0, ρ1) such that, for any τ ∈
XN−|ρ0|(0) and any ν ∈ XN−|σi|(1) either T is left-full below (ρi · ψ(τ), σi · ν) or
(ρi · ψ(τ), σi · ν) /∈ T . In other word, ψ is such that(

ρi · ψ(τ), σi · ν
)
∈ T =⇒ T is left-full below

(
ρi · ψ(τ), σi · ν

)
(3.4.1)

Now for each i < 2, define the set

Bi :=
{
(ρi · τ, σi · ν) ∈ T : (τ, ν) ∈ X and (ρi · ψ(τ), σi · ν) ∈ T

}
And consider S ⊆ T , the downward-closure of B0 ∪ B1. We claim that S is a
cross-subtree of T for which (ρi, σi)i<2 is a condition-tuple.

Indeed, fix some i < 2 and let τ ∈ 3N−|ρi|. Just as we did above to show that
∀τ, f(τ) 6= ∅, since T is left-full below (ρi, σi), there is some ν ∈ XN−|σi|(1) such
that (ρi ·ψ(τ), σi · ν) ∈ T . Thus, by 3.4.1, T is left-full below (ρi ·ψ(τ), σi · ν) and
by definition of Bi, (ρi · τ, σi · ν) ∈ Bi ⊆ S. Thus S is left-full below (ρi, σi).

116

3.4 Cross-constraint basis theorems

By Lemma 3.4.14, there is a tuple (ρ̂i, σ̂i)i<2 ∈ A∩S2 such that ∀i < 2, (ρ̂i, σ̂i) <
(ρi, σi), and (ρ̂0, ρ̂1) is completely incompatible over (ρ0, ρ1). Since A is closed
under extension, we can suppose without loss of generality that |ρ̂i| = |σ̂i| = N ,
hence that (ρ̂i, σ̂i) ∈ Bi. Let τ i ∈ XN−|ρi|(0) and νi ∈ XN−|σi|(1) be such that
ρ̂i = ρi · τ i and σ̂i = σi · νi. By definition of Bi, (ρi · ψ(τ i), σi · νi) ∈ T , thus by
Equation (3.4.1), T is left-full below (ρi ·ψ(τ i), σi ·νi). Thus, (ρi ·ψ(τ i), σi ·νi)i<2 is
a condition-tuple for [T]. Moreover, since ψ preserves incompatibility over (ρ0, ρ1),
then (ρi ·ψ(τ i), σi ·νi)i<2 is an extension of (ρi, σi)i<2, and also ∀i < 2, (ρi ·ψ(τ i), σi ·
νi) < (ρ̂i, σ̂i), thus ρi · ψ(τ i), σi · νi)i<2 ∈ A.

3.4.4 Cross-constraint cone avoidance basis theorem
We now prove our first cross-constraint basis theorem which requires some sort of
first-jump control, using the combinatorics developed in Section 3.4.3. This basis
theorem was first proven by Liu [Liu23, Lemma 4.5] using a different argument.
Our new proof follows more closely the standard proof of the cone avoidance basis
theorem for Π0

1 classes.

Theorem 3.4.16 (Cross-constraint cone avoidance, Liu [Liu23, Lemma 4.5]).
Let C be a non-computable set. Any left-full computable instance T of CC has
a solution (X i, Y i)i<2 such that (X0, Y 0)⊕ (X1, Y 1) 6>T C.

Proof. To prove the theorem, we use forcing with conditions of the form ((ρi, σi)i<2, U,B),
where

• U is a B-computable cross-subtree of T
• (ρi, σi)i<2 is a condition-tuple for [U]

• B ⊆ N and B 6>T C

A condition ((µi, τ i)i<2, S, A) extends another ((ρi, σi)i<2, U,B) if A >T B, S ⊆ U

and (µi, τ i)i<2 extends (ρi, σi)i<2 as a condition-tuple.
We will satisfy the following requirements for each e ∈ N:

Re : Φ
(X0,Y 0)⊕(X1,Y 1)
e 6= C

A condition ((ρi, σi)i<2, U,B) forces Re, if Re holds for all (X i, Y i) ∈ [U]

extending (ρi, σi) for each i < 2.

Lemma 3.4.17. For every condition c := ((ρi, σi)i<2, U,B) and every e ∈ N,
there is an extension of c that forces Re.

117

Chapter 3 Cross-constraint basis theorems and products of partitions

Proof. For all x ∈ N, v < 2, define

Ax,v :=
{
(ρ̂i, σ̂i)i<2 ∈ X 2

<N : Φ(ρ̂0,σ̂0)⊕(ρ̂1,σ̂1)
e (x) ↓= v

}
The set Ax,v is upward-closed, and Σ0

1 uniformly in (x, v). Consider the following
Σ0

1(B) set:
Q =

{
(x, v) : Ax,v is U -sufficient over (ρi, σi)i<2

}
Case 1. (x,C(x)) 6∈ Q for some x ∈ N. Let L be the Π0

1(B) class of cross-trees
S ⊆ U witnessing that Ax,C(x) is not U -sufficient over (ρi, σi)i<2. By the cone
avoidance basis theorem, there is some cross-tree S ∈ L such that S ⊕ B 6>T C.
The condition d :=

(
(ρi, σi)i<2, S, S ⊕ B

)
is the extension we are looking for.

Indeed, it forces Re, because for (X i, Y i)i<2 ∈ [d], if Φ(X0,Y 0)⊕(X1,Y 1)
e is total, then

it is different from C on input x.
Case 2. (x, 1− C(x)) ∈ Q for some x ∈ N. Unfolding the definition, Ax,1−C(x)

is U -sufficient over (ρi, σi)i<2, so by Lemma 3.4.15, there is a condition-tuple
(ρ̂i, σ̂i)i<2 ∈ Ax,1−C(x) extending (ρi, σi)i<2. Thus the condition

(
(ρ̂i, σ̂i)i<2, U,B

)
is the desired extension, as it forces Re.

Case 3. Neither Case 1 nor Case 2 holds. Then Q is the Σ0
1(B) graph of the

characteristic function of C, so C 6T B. Contradiction.

We are now ready to prove Theorem 3.4.16. Let c0 := ((ρi, σi)i<2, U,B) be a
condition that excludes a maximal number of components and let F be a filter
containing c0 that is sufficiently generic for this notion of forcing. For i < 2, let
X i :=

⋃
{ρ̂i : ((ρ̂i, σi)i<2, U,B) ∈ F} and Y i :=

⋃
{σ̂i : ((ρi, σ̂i)i<2, U,B) ∈ F}. By

Lemma 3.3.6, X i and Y i are both infinite sequences. By Lemma 3.4.5, for every
s < r, Y 0

s ∩ Y 1
s is infinite. By Lemma 3.4.17, (X0, Y 0) ⊕ (X1, Y 1) 6>T C. This

completes the proof of Theorem 3.4.16.

Corollary 3.4.18. For any non-computable set C ⊆ N, there is a cross-constraint
ideal that does not contain C.

Proof. We construct a sequence of sets Z0 6T Z1 6T . . . such that for any integer
n = 〈k, e〉, Zn 6>T C, and if ΦZk

e is an instance of CC, then Zn+1 computes a
solution.

Define Z0 := ∅. Suppose Zn has been defined and let n = 〈k, e〉. If ΦZk
e is not

a left-full cross-tree, then Zn+1 := Zn. Otherwise, by Theorem 3.4.16 relativized
to Zn, there is a pair of paths P0 and P1, such that P0 ⊕ P1 ⊕ Zn 6>T C. In which
case Zn+1 := P0 ⊕ P1 ⊕ Zn.

118

3.4 Cross-constraint basis theorems

By construction, the class M := {X ∈ 2N : ∃n,X 6T Zn} is a cross-constraint
ideal containing only sets avoiding the cone above C, in particular C is not in the
ideal.

3.4.5 Cross-constraint preservation of non-Σ0
1 definitions

We now prove a second cross-constraint basis theorem, about preservation of
non-Σ0

1 definitions. This basis theorem for Π0
1 classes was first proven by Wang

[Wan16, Theorem 3.6], and implies the cone avoidance basis theorem in a straight-
forward way. Later, Downey et al. [DGHT+22, Theorem 4.2] actually proved that
the two basis theorems are equivalent, as any problem satisfying any of them,
satisfies both. Thus, the following theorem is a non-trivial consequence of Theo-
rem 3.4.16. However, we give a direct proof of it, to get familiar with the combi-
natorics of the cross-constraint problem.

Theorem 3.4.19 (Cross-constraint preservation of non-Σ0
1 definitions). Let C

be a non-Σ0
1 set. Any computable instance T of CC, has a solution (X i, Y i)i<2

such that C is not Σ0
1 relative to (X0, Y 0)⊕ (X1, Y 1).

Proof. To prove the theorem, we use forcing with conditions of the form ((ρi, σi)i<2, U,B)

where
• U is a B-computable cross-subtree of T
• (ρi, σi)i<2 is a condition-tuple for [U]

• B ⊆ N is such that C is not Σ0
1(B)

A condition ((µi, τ i)i<2, S, A) extends another ((ρi, σi)i<2, U,B) if A >T B, S ⊆ U

and (µi, τ i)i<2 extends (ρi, σi)i<2 as a condition-tuple.
We want to satisfy the following requirements for every Turing index e:

Re : W
(X0,Y 0)⊕(X1,Y 1)
e 6= C

Lemma 3.4.20. For every condition c := ((ρi, σi)i<2, U,B) and every e ∈ N,
there is an extension of c forcing Re.

Proof. Given some x ∈ N, consider the set

Ax := {(ρ̂i, σ̂i)i<2 ∈ X 2
<N : x ∈ W (ρ̂0,σ̂0)⊕(ρ̂1,σ̂1)

e }

119

Chapter 3 Cross-constraint basis theorems and products of partitions

Here again, the set Ax is upward-closed and Σ0
1 uniformly in x. Let

Q := {x : Ax is U -sufficient over (ρi, σi)i<2}

The set Q is Σ0
1(B), thus Q 6= C. This leads to two cases.

Case 1. There is x ∈ C −Q. Let L be the class of all cross-trees S ⊆ U which
witness that Ax is not U -sufficient over (ρi, σi)i<2. It is non-empty by hypothesis,
and since Ax is Σ0

1, then L is Π0
1(B). Now since WKL admits preservation of

non-Σ0
1 definitions (see [Wan16, Theorem 3.6]), there is a cross-tree S ∈ L such

that C is not Σ0
1(S⊕B). The condition d :=

(
(ρi, σi)i<2, S, S⊕B

)
is the extension

we are looking for, since x ∈ C but d forces that x /∈ W
(X0,Y 0)⊕(X1,Y 1)
e .

Case 2. There is x ∈ Q − C. Unfolding the definition, Ax is U -sufficient
over (ρi, σi)i<2, so by Lemma 3.4.15, there is a condition-tuple (ρ̂i, σ̂i)i<2 ∈ Ax

extending (ρi, σi)i<2. The condition
(
(ρ̂i, σ̂i)i<2, U,B

)
is the desired extension, as

it forces x ∈ W
(X0,Y 0)⊕(X1,Y 1)
e for some x 6∈ C.

We are now ready to prove Theorem 3.4.19. Let c0 := ((ρi, σi)i<2, U,B) be a
condition that excludes a maximal number of components and let F be a filter
containing c0 that is sufficiently generic for this notion of forcing. For i < 2, let
X i :=

⋃
{ρi : ((ρi, σi)i<2, U,B) ∈ F} and Y i :=

⋃
{σi : ((ρi, σi)i<2, U,B) ∈ F}. By

Lemma 3.3.6, X i and Y i are both infinite sequences. By Lemma 3.4.5, for every
s < r, Y 0

s ∩ Y 1
s is infinite. By Lemma 3.4.20, C is not Σ0

1((X
0, Y 0) ⊕ (X1, Y 1)).

This completes the proof of Theorem 3.4.19.

Corollary 3.4.21. For any non-Σ0
1 set C ⊆ N. There is a cross-constraint ideal

such that C is not Σ0
1 relative to any element of the ideal.

Proof. We construct a sequence of sets Z0 6T Z1 6T . . . such that for any integer
n = 〈k, e〉, C is not Σ0

1(Zn), and if ΦZk
e is an instance of CC, then Zn+1 computes

a solution.
Define Z0 := ∅. Suppose Zn has been defined, and let n = 〈k, e〉. If ΦZk

e is not a
left-full cross-tree, then Zn+1 := Zn. Otherwise, by Theorem 3.4.19 relativized to
Zn, there is a pair of paths P0 and P1, such that C is not Σ0

1 relative to P0⊕P1⊕Zn.
In which case Zn+1 := P0 ⊕ P1 ⊕ Zn.

By construction, the class M := {X ∈ 2N : ∃n,X 6T Zn} is a cross-constraint
ideal such that C is not Σ0

1 relative to any element in it.

Corollary 3.4.22 (Cross-constraint cone avoidance). Let C be a non-computable
set. Any left-full computable instance T of CC, has a solution (X i, Y i)i<2 such that
(X0, Y 0)⊕ (X1, Y 1) 6>T C.

120

3.4 Cross-constraint basis theorems

Proof. Suppose C is non-computable. Then either C or C is not Σ0
1. By Theo-

rem 3.4.19, there is a solution (X i, Y i)i<2 ∈ [T]2 such that either C or C is not Σ0
1

relative to (X0, Y 0)⊕ (X1, Y 1)). In particular, (X0, Y 0)⊕ (X1, Y 1) 6>T C.

3.4.6 Cross-constraint low basis theorem
The low basis theorem for Π0

1 classes is one of the most famous theorems in com-
putability theory. We prove its counterpart for the cross-constraint problem. How-
ever, contrary to the case of Π0

1 classes, where the theorem can be strengthened to
obtain superlow sets, it does not seem to be the case for cross-constraint problems.

Theorem 3.4.23 (Cross-constraint low basis). Any left-full computable in-
stance T of CC, has a solution (X i, Y i)i<2 such that (X0, Y 0) ⊕ (X1, Y 1) is
low.

Proof. To prove the theorem, we use forcing with conditions of the form(
(ρi, σi)i<2, U,B

)
where

• U is a B-computable cross-subtree of T
• (ρi, σi)i<2 is a condition-tuple for [U]

• B is a set of low degree
An index for a condition ((ρi, σi)i<2, U,B) is a tuple ((ρi, σi)i<2, a, b) such that
ΦB

a = U and Φ∅′

b = B′. An index is therefore a finite representation of a condition.
We say that a condition c := ((ρi, σi)i<2, U,B) decides the jump on e if either
Φ

(ρ0,σ0)⊕(ρ1,σ1)
e (e) ↓ holds or c forces Φ

(X0,Y 0)⊕(X1,Y 1)
e (e) ↑.

Lemma 3.4.24. For every condition c := ((ρi, σi)i<2, U,B) and every e ∈ N,
there is an extension d of c deciding the jump on e. Moreover, an index for d
can be found ∅′-uniformly in e and an index for c.

Proof. Consider the following Σ0
1 set

Ae := {(ρ̂i, σ̂i)i<2 ∈ X 2
<N : Φ(ρ̂0,σ̂0)⊕(ρ̂1,σ̂1)

e (e) ↓}

Case 1. Ae is not U-sufficient over (ρi, σi)i<2. Let L be the class of all
cross-trees S ⊆ T which witness that Ae is not U -sufficient over (ρi, σi)i<2. Since

121

Chapter 3 Cross-constraint basis theorems and products of partitions

Ae is Σ0
1, then L is Π0

1(B). By the uniform low basis theorem relative to B

(see [HJKH+08, Theorem 4.1]), there is some S ∈ L such that (S ⊕ B)′ 6T ∅′.
Moreover, a lowness index of S ⊕ B (an integer a such that Φ∅′

a = (S ⊕ B)′) can
be ∅′-computed from an index of L . The condition d := ((ρi, σi)i<2, S, S ⊕ B)

is the extension we are looking for. Indeed, Φ
(X0,Y 0)⊕(X1,Y 1)
e (e) ↑ holds for any

(X i, Y i)i<2 ∈ [d].
Case 2. Ae is U-sufficient over (ρi, σi)i<2. By Lemma 3.4.15, there is a

condition-tuple (ρ̂i, σ̂i)i<2 ∈ Ae for [U] which extends (ρi, σi)i<2. Thus, the condi-
tion

(
(ρ̂i, σ̂i)i<2, U,B

)
is the desired extension, since Φ

(ρ̂0,σ̂0)⊕(ρ̂1,σ̂1)
e (e) ↓.

Finally, note that ∅′ can decide whether or not it is in the first or second case,
since Ae is Σ0

1, and so “Ae is U -sufficient over (ρi, σi)i<2” also is. Hence, each
extension can be uniformly computed from ∅′.

We are now ready to prove Theorem 3.4.23. We build a uniformly ∅′-computable
descending sequence of conditions c0 > c1 > . . . such that for every n, letting
cn := ((ρin, σ

i
n)i<2, Un, Bn)

• cn+1 decides the jump on n ;
• |ρin| > n ; |σi

n,s| > n for every s < r;
• (σ0

n+1,s, σ
1
n+1,s) is not completely incompatible over (σ0

n,s, σ
1
n,s).

Let c0 = ((ρi, σi)i<2, U,B) be a condition that excludes a maximal number of
components. Note that c0 does not need to be found in ∅′, since it is a one-time
guess. Assuming cn has been defined, by Lemma 3.4.24, there is an extension c1n 6
cn deciding the jump on n. By Lemma 3.3.6, there is an extension c2n 6 c1n satisfying
the second item, and by Lemma 3.4.5, there is an extension cn+1 6 c2n satisfying
the third item. Moreover, indices for each of these extensions can be found ∅′-
computably uniformly in n. This completes the proof of Theorem 3.4.23.

Corollary 3.4.25. There is a cross-constraint ideal that contains only low sets.

Proof. We construct a sequence of sets Z0 6T Z1 6T . . . such that for any integer
n = 〈k, e〉, Zn is low, and if ΦZk

e is an instance of CC, then Zn+1 computes a
solution.

Define Z0 := ∅. Suppose Zn has been defined, and let n = 〈k, e〉. If ΦZk
e is not a

left-full cross-tree, then Zn+1 := Zn. Otherwise, by Theorem 3.4.23 relativized to
Zn, there is a pair of paths P0 and P1, such that (P0 ⊕ P1 ⊕Zn)

′ 6T Z
′
n. In which

case Zn+1 := P0 ⊕ P1 ⊕ Zn.
By construction, the class M := {X ∈ 2N : ∃n,X 6T Zn} is a cross-constraint

ideal containing only low sets.

122

3.5 Products of instances for Ramsey’s theorem

3.5 Products of instances for Ramsey’s theorem
In this last section, we focus on the case of products of instances for Ramsey’s
theorem. We first define a notion developed by Liu in [Liu23], that is similar to
hyperimmunity, and use it to establish a preservation result for COH. This result
and the basis theorems established earlier are then applied to prove separation
results.

3.5.1 Γ-hyperimmunity
We now define the notion of Γ-hyperimmunity, first introduced by Liu [Liu23,
Section 4.3]. It is a generalization of hyperimmunity (see Lemma 3.5.10) that is
tailored to be preserved by CC (see Theorem 3.5.13). Nonetheless, it is much more
complex to define as it is based on an iterated process.

The idea behind Γ-hyperimmunity relies on keeping track of a finite list of “can-
didates” (potential approximations of the final 3-coloring) via some tree structures.
The trees themselves will represent all the possible ways of selecting the list of can-
didates. The action of adding or removing candidates is controlled by the following
definition.

Definition 3.5.1. A tree T1 ⊆ N<N is a one-step variation of T0 ⊆ N<N if
there is a node ξ ∈ T0 and a non-empty finite set F ⊆ N such that

• either ξ ∈ `(T0) and T1 = T0 ∪ ξ · F
• or ξ ∈ T0 − `(T0), T1 = (T0 − [ξ]≺) ∪ ξ · F and F ({n ∈ N : ξ · n ∈ T0}

In other words, a one-step variation of a tree consists in either extending a leaf
with finitely many immediate children, or backtracking by removing the children
of a node, except finitely many immediate ones. This is a non-reflexive relation.

The evolution of the list of candidates will correspond to a sequence of one-step
variations of some trees called Γ-spaces. To be more precise, we use induction
to define, for any m ∈ N, a partial order (Γm,4m) forming a tree whose root is
denoted ζm.

Firstly, Γ0 is the tree of depth 1 whose elements are the functions f : N → 3

with finite domain, the root ζ0 is the empty map, and every other element is an
immediate child of the root. Then, when the tree Γm is constructed for some m,
the goal of the next tree Γm+1 is to keep track of all the possible ways of selecting
candidates in Γm. It does so through its structure. More formally:

123

Chapter 3 Cross-constraint basis theorems and products of partitions

Definition 3.5.2. Fix a partial order (W,4) which is a tree of
root ζ. A computation path on (W,4) is a finite sequence
(T0, ϕ0), (T1, ϕ1), . . . , (Tu−1, ϕu−1) where, for all j < u, Tj ⊆ N<N is a finite
tree such that

• T0 = {ε}
• j ∈ N, Tj+1 is a one-step variation of Tj

And, for all j < u, ϕj : Tj → W is a function such that
• ϕj(ε) = ζ

• ϕj is order-preserving
• ϕj+1 and ϕj are compatible, i.e. ϕj+1 = ϕj on the domain Tj+1 ∩ Tj

Hence, Γm+1 is the set of computation paths on (Γm,4m). Its root ζm+1 is the
computation path ({ε}, ε 7→ ζm), and 4m+1 is the prefix relation on sequences.
Informally, in the case of Γ1, the root is the nowhere-defined function, the imme-
diate children are finite sets of functions with finite support, and the sub-branches
consist of removing elements from this finite set.

A list of candidates can be associated to any computation path, by essentially
“flattening” the trees.

Definition 3.5.3. The interpretation JγK of a computation path γ ∈ Γm is
a finite non-empty subset of Γ0 defined inductively as follows:

• if m = 0, JγK = {γ}
• if m > 0 and γ := ((T0, ϕ0), . . . , (Tu−1, ϕu−1)), then JγK =

⋃
ζ∈`(Tu−1)

JζK

Note that, because backtracking is a one-step variation, the interpretation may
gain elements, even though the underlying tree structure is progressing.

Moreover, thanks to the next lemma, we know that “progressing on a tree”
always terminates. It also gives us more information about the structure of the Γ

spaces, which is reminiscent of the Hydra game.

Lemma 3.5.4 (Liu [Liu23, Lemma 4.12]). For all m ∈ N, the tree Γm is
well-founded.

Proof. By induction on m, we show that Γm is well-founded. For m = 0 the result
comes from the definition of Γ0. Now suppose the result holds for some m, and let
H be the height of Γm, we prove the result for m+ 1.

By contradiction, suppose there is an infinite path (T0, ϕ0), (T1, ϕ1), . . . in Γm+1.

124

3.5 Products of instances for Ramsey’s theorem

{∅, f}

{∅, f, g, h} {∅, f} {∅, f, g, h}

{∅} {∅}

Figure 3.1: Representation of a computation path in Γ2 gaining elements. The sets
represent subtrees of Γ0. So on the left we have a subtree of Γ1 whose
interpretation is {∅, f}. The squiggly arrow represents the “or” case
of a one-step variation applied to the root. And on the right we have
a subtree of Γ1 whose interpretation is {∅, f, g, h}.

Claim 3.5.5. For all h 6 H, there is Sh ⊆ N6h and sh ∈ N such that

∀t > sh, {ξ ∈ Tt : |ξ| 6 h} = Sh

Proof. We prove the result by induction on h. For h = 0 we have S0 = {ε} and
s0 = 0, because ε ∈ T0 and a one-step variation can only remove a node through
the “or” case, which cannot apply to ε since it has no parent. Now suppose the
result holds for some h < H. By hypothesis, the one-step variations after Tsh can
only apply to nodes of length greater or equal to h, otherwise the value of Sh would
change, leading to a contradiction.

Consider ξ ∈ Tsh such that |ξ| = h, there are two possibilities. Either ξ will
never have any child, i.e. ∀t > sh,∀n ∈ N, ξ · n /∈ Tt, in which case we define
Rξ := ∅ and rξ = sh. Or ξ already has or will have an immidiate successor, i.e.
∃t > sh,∃n ∈ N, ξ ·n ∈ Tt. Since the children of ξ result from a one-step variation,
there must be finitely many of them. Moreover, this number must decrease over
time. Indeed, the “either” case cannot be applied to ξ anymore, as it is not a leaf
anymore, and it never will be again. Because the “or” case cannot be applied to
any ancestor of ξ, and if it is applied to ξ, then one of its children must remain,
by definition of one-step variation. Thus, the number of children of ξ will decrease
and ultimately stabilize at some point rξ ∈ N. Let Rξ ⊆ Nh+1 be the stabilized
set of children of ξ. We can now define Sh+1 :=

⋃
ξ∈Sh

Rξ and sh+1 := maxξ∈Sh
rξ.

They verify the desired property.

For all s ∈ N, the height of Ts is inferior or equal to H, since ϕi : Ts → Γm is

125

Chapter 3 Cross-constraint basis theorems and products of partitions

an embedding. Thus, the previous claim implies that ∀t > sH , Tt = TsH . This is a
contradiction since a one-step variation of a tree is necessarily different from that
tree.

We now introduce a notion that corresponds to arrays, due to the role they play
in the definition of hyperimmunity.

Definition 3.5.6. For n ∈ N, a set F ⊆ Γ0 is over n if for every g ∈ F ,
dom g ⊆]n,∞[. By extension, for m,n ∈ N, we say γ ∈ Γm is over n if JγK is
over n.

Definition 3.5.7. Form ∈ N, a Γm-approximation is a function f : N×N →
Γm (for some m) if, for all n ∈ N, the following properties hold.

• f(n, 0) = ζm
• f(n,−) is order-preserving
• ∀s ∈ N, f(n, s) is over n

We also define its interpretation as

JfK : N× N → Pfin(Γ0)

n, s 7→ Jf(n, s)K

These approximations essentially list some paths from the Γ-space they are
associated with. Observe that, given a Γm-approximation f , the limit lims f(n, s)

exists for any integer n, because Γm is well-founded.
Finally, we can state the definition of Γ-hyperimmunity. Its structure is similar

to that of regular hyperimmunity, “diagonal against” replaces the usual condition
on the coloring, and Γ-approximations replace arrays.

Definition 3.5.8. A (potentially partial) function f : N → 3 is diagonal
against a set F ⊆ Γ0 if f extends some element in F , i.e. ∃g ∈ F, dom f ⊇
dom g and f�dom g = g. By extension, for m ∈ N, a partial 3-coloring f is
diagonal against γ ∈ Γm, if it is diagonal against JγK.

The term “diagonal against” will become clearer with the next definition, where,
like in a diagonalization argument, the function f tries to defeat countably many
finite sets F , whose purpose is to contain functions that are all different from f ,
i.e. ∀g ∈ F, ∃x ∈ dom f ∩ dom g, f(x) 6= g(x).

126

3.5 Products of instances for Ramsey’s theorem

Definition 3.5.9. A 3-coloring f is Γ-hyperimmune relative to D ⊆ N if,
for every m ∈ N and for every D-computable Γm-approximation g, there is an
n ∈ N such that f is diagonal against lims g(n, s).

The next lemma shows that Γ-hyperimmunity is a stronger version of hyperim-
munity.

Lemma 3.5.10. If a 3-coloring f is Γ-hyperimmune relative to D ⊆ N, then
it is also hyperimmune relative to D.

Proof. Let (Fn,0, Fn,1, Fn,2)n∈N be a D-computable sequence of mutually disjoint
finite sets (Fn,0, Fn,1, Fn,2)n∈N such that min

⋃
j<3 Fn,j > n.

For any n ∈ N, consider we define a 3-coloring with finite support

γn : x 7→

{
j if x ∈ Fn,j

↑ otherwise

It is well defined since the finite sets Fn,j are mutually disjoint. And consider the
function

g : N2 → Γ0

n, s 7→

{
∅ if s = 0

γn otherwise

It is a D-computable Γ0-approximation, thus by Γ-hyperimmunity of f there is
N ∈ N such that f is diagonal against lims g(N, s), i.e. f extends γN , i.e. ∀j <
3, FN,j ⊆ f−1(j).

The following proposition ensures the existence of a Γ-hyperimmune coloring.

Proposition 3.5.11 (Liu [Liu23, Lemma 4.17]). There is a ∆0
2 coloring which

is Γ-hyperimmune.

Proof. First, it is possible to computably list all computable Γm-approximations,
where m is any integer. Indeed, given a computable partial order (W,4), the set
of its computation paths is uniformly computable. This is because they are finite
sequences composed of finite trees, so all the constraints listed in the definition
can be computed. From there, the set of Γm-spaces is uniformly computable in m.

127

Chapter 3 Cross-constraint basis theorems and products of partitions

Hence, we fix an enumeration (Φe,m)e∈N of all the computable Γm-approximations,
for any m.

We wish to construct f : N → 3 such that, for any e,m ∈ N, the following
requirement is satisfied.

Re,m := f is diagonal against Φe,m

Suppose we have so far constructed ρ ∈ 3<N, we now consider the Γm-approximation
Φe,m, and we are going to use ∅′ to find an integer s such that Φe,m(|ρ|, s) is the
limit value for Φe,m(|ρ|,−). Then either JΦe,m(|ρ|, s)K = ∅, in which case Re,m is
satisfied. Or JΦe,m(|ρ|, s)K 6= ∅, in which case Re,m is satisfied for ρ ∪ τ where
τ ∈ Φe,m(|ρ|, s). Because, by definition of a Γm-approximation, τ is over |ρ|, i.e.
min dom τ > |ρ|

To find s ∈ N, build a sequence of integers, starting with s0 := 0. If sk is the lat-
est integer we have defined, then use ∅′ to know whether ∃y > sk,Φe,m(|ρ|, y) �m

Φe,m(|ρ|, sk). If the answer is yes then sk+1 is defined by such a witness, otherwise
we stop defining the sequence and s := sk.

The above procedure must end at some point, because

Φe,m(|ρ|, s0) ≺m Φe,m(|ρ|, s1) ≺m . . .

is a strictly increasing sequence in the space Γm, which is well-founded (by Lemma 3.5.4).
And so Φe,m(|ρ|, s) is the limit value we were looking for, because the case that
defines s ensures that ∀y > s,Φe,m(|ρ|, y) = Φe,m(|ρ|, s).

In the article of Liu [Liu23], the notion of Γ-hyperimmunity yields two new basis
theorems, one on regular Π0

1 classes and the other on the cross version of Π0
1 classes.

Theorem 3.5.12 (Liu [Liu23, Lemma 4.18]). Let f : N → 3 be Γ-
hyperimmune. For every non-empty Π0

1 class P ⊆ 2N, there is a member
X ∈ P such that f is Γ-hyperimmune relative to X.

Theorem 3.5.13 (Liu [Liu23, Lemma 4.2]). Let f : N → 3 be Γ-hyperimmune.
For every computable instance of CC, there is a solution X such that f is Γ-
hyperimmune relative to X.

For proofs of these theorems we refer the reader to Liu’s original article, as they
were already quite optimally written and our formalism would not really add any
value.

128

3.5 Products of instances for Ramsey’s theorem

3.5.2 Preservation of Γ-hyperimmunity for COH

Following the idea of decomposing RT2
2 into SRT2

2 + COH, we prove the following
theorem of preservation for COH, as it will intervene in the proof of Theorem 3.5.20.

To later simplify diagonalization arguments, we will only consider relevant func-
tionals, i.e. the ones that yield only Γ-approximations. The following lemma en-
sures that we are able to do this.

Definition 3.5.14. For any m ∈ N, a Turing functional Ψ is a Γm-functional
if and only if it is total and ΨX is a Γm-approximation for every oracle X.

Lemma 3.5.15. For every m ∈ N and every Turing functional Ξ, there is a
Γm-functional Ψ such that, for any oracle X, if ΞX is a Γm-approximation,
then ΨX has the same limit function. Moreover, the index of Ψ is obtained
uniformly from the index of Ξ.

Proof. The functional Ψ proceeds as follows. Fix an oracle X and some n ∈ N.
Define ΨX(n, 0) := ζm. Now to define ΨX(n, t) for t > 0, consider s < t the biggest
integer (if it exists) such that ΞX(n, s)[t] ↓ and such that ΞX(n, s)[t] � ΨX(n, t−1).
If s exists then ΨX(n, t) := ΞX(n, s)[t]. Otherwise, ΨX(n, t) := ΨX(n, t− 1).

We can now proceed to the proof of the preservation result.

Theorem 3.5.16. Let g ∈ 3N be a Γ-hyperimmune function and R0, R1, . . .

be a uniformly computable sequence of sets. Then there is an ~R-cohesive set
G such that g is Γ-hyperimmune relative to G.

Proof. We proceed by forcing, using Mathias conditions (F,X) such that X is
computable. For a Γm-functional Ψ, define the requirement RΨ,m := there is
n ∈ N such that g is diagonal against limsΨ

G(n, s).

Lemma 3.5.17. For each condition (F,X), m ∈ N, and Γm-functional Ψ,
there is an extension forcing RΨ,m

Proof. We define a computable Γm-approximation f : N2 → Γm as follows. First,
for every n, f(n, 0) := ζm. Suppose that at step s, we have defined f(n, s) for every
n. Then for each n, if there is some F ′ ⊆ X with maxF ′ < s and some t 6 s such
that ΨF∪F ′

(n, t) ↓ and ΨF∪F ′
(n, t) � f(n, s), then let f(n, s + 1) := ΨF∪F ′

(n, t).
Otherwise, let f(n, s+ 1) := f(n, s). Then go to the next stage.

129

Chapter 3 Cross-constraint basis theorems and products of partitions

By construction, f is a Γm-approximation. Since g is Γ-hyperimmune, there is
n ∈ N such that g is diagonal against lims f(n, s). Now by definition of f , there is a
finite (possibly empty) F ′ ⊆ X and t ∈ N such that lims f(n, s) = ΨF∪F ′

(n, t). We
claim that (F ∪F ′, X−{0, . . . ,maxF ′}) forces RΨ,m. Indeed, by construction of f
and since we considered the limit, we have that, for every F ′′ ⊆ X−{0, . . . ,maxF ′}
and cofinitely many t′ ∈ N, ΨF∪F ′∪F ′′

(n, t′) = ΨF∪F ′
(n, t).

Let F be a sufficiently generic filter for computable Mathias forcing and let
G =

⋃
(F,X)∈F F . By genericity, G is ~R-cohesive, since given a condition (F,X)

and a computable set Rx, either (F,X ∩ Rx) or (F,X ∩ Rx) is a valid extension.
By Lemma 3.5.17, for every m and Γm-functional Γ, g diagonalizes against ΓG.
Thus, by Lemma 3.5.15, g is Γ-hyperimmune relative to G.

Corollary 3.5.18. For every Γ-hyperimmune function f : N → 3, there exists a
cross-constraint ideal M |= COH such that f is Γ-hyperimmune relative to every
element of M.

Proof. We construct a sequence of sets Z0 6T Z1 6T . . . such that for any integer
n = 〈i, k, e〉,

• f is Γ-hyperimmune relative to Zn.
• if n = 〈0, k, e〉, and if ΦZk

e is an instance of CC, then Zn+1 computes a
solution.

• if n = 〈1, k, e〉, and if ΦZk
e is an instance of COH, then Zn+1 computes a

solution.
Define Z0 := ∅. Suppose Zn has been defined. If n = 〈0, k, e〉 and ΦZk

e is not
a left-full cross-tree, then Zn+1 := Zn. Otherwise, by Theorem 3.5.13 relativized
to Zn, there is a pair of paths P0 and P1, such that f is Γ-hyperimmune relative
to P0 ⊕ P1 ⊕ Zn. In which case Zn+1 := P0 ⊕ P1 ⊕ Zn. If n = 〈1, k, e〉 and ΦZk

e is
not a countable sequence of sets, then Zn+1 := Zn. Otherwise, by Theorem 3.5.16
relativized to Zn, there is a ΦZk

e -cohesive set C, such that f is Γ-hyperimmune
relative to C ⊕ Zn. In which case Zn+1 := C ⊕ Zn.

By construction, the class M := {X ∈ 2N : ∃n,X 6T Zn} is a cross-constraint
ideal such that f is Γ-hyperimmune relative to every element of M.

3.5.3 Separation results
We now present the different reducibility results that can be obtained from the
theorems established in this chapter.

130

3.5 Products of instances for Ramsey’s theorem

Theorem 3.5.19 (Liu [Liu23, Theorem 2.1]). RT1
3 66soc (RT

1
2)

∗

Proof. Let M be a countable cross-constraint ideal (such an ideal exists thanks
to Corollary 3.4.7), and let f ∈ X (0) be hyperimmune relative to any set in M.
For any g ∈ X (1), by Theorem 3.3.11, there are sets ~G witnessing the inequality
RT1

3 66soc (RT
1
2)

∗.

Liu [Liu23, Theorem 4.1] proved that SRT2
3 66c (SRT2

2)
∗. We strengthen his

result by using Theorem 3.3.14 to prove that it holds even for non-stable instances
of RT2

2.

Theorem 3.5.20. SRT2
3 66c (RT

2
2)

∗

Proof. By proposition 3.5.11 there exists a ∆0
2 coloring f : N → 3 which is

Γ-hyperimmune. Using Shoenfield’s limit lemma, there is a stable computable
function h : [N]2 → 3 such that for every x, limy h(x, y) = f(x). Consider
h as a computable instance of SRT2

3. Fix any r-tuple of computable colorings
g0, . . . , gr−1 : [N]2 → 2 for some r ∈ N. It suffices to show the existence of gi-
homogeneous sets Hi for every i < r such that

⊕
j<rHj does not compute any

infinite h-homogeneous set.
By Corollary 3.5.18, there is a countable cross-constraint ideal M |= COH for

which f is Γ-hyperimmune relative to any set in M. In particular, since g0, . . . , gr−1

are computable, they belong to M. Moreover, by Lemma 3.5.10, f is hyperimmune
relative to every element of M. By Theorem 3.3.14, there exists gi-homogeneous
sets Hi for every i < r, such that

⊕
j<rHj does not compute any infinite f -

homogeneous set. Since any h-homogeneous set is f -homogeneous, then
⊕

j<rHj

does not compute any infinite h-homogeneous set.

We now show that the previous theorem can be generalized to any n > 2,
thus answering Question 12. Jockusch [Joc72b, Lemma 5.4] proved that for every
computable coloring f : [N]n+1 → k, every PA degree relative to ∅′ computes an
infinite pre-homogeneous set for f . Moreover, for n > 2, Hirschfeldt and Jocksuch
[HJ16, Theorem 2.1] proved a reversal.

Theorem 3.5.21. For every n > 2, SRTn
3 66c (RT

n
2)

∗

131

Chapter 3 Cross-constraint basis theorems and products of partitions

Proof. We prove by induction on n > 2 that for every set P , there exists a ∆0
n(P)

coloring f : N → 3 such that for every r > 1 every r-tuple of P -computable col-
orings g0, . . . , gr−1 : [N]n → 2, there are infinite ~g-homogeneous sets G0, . . . , Gr−1

such that ~G⊕ P does not compute any infinite f -homogeneous set.
The case n = 2 corresponds to a relativized form of Theorem 3.5.20. Now

suppose the hypothesis holds for some n ∈ N. Fix some set P , and let Q� P ′ be
such that Q′ 6T P

′′. It exists by relativization of the low basis theorem (Jockusch
and Soare [JS72b]).

By induction hypothesis relativized to Q, there exists a ∆0
n(Q) (i.e. ∆0

n+1(P))
coloring f : N → 3 such that for every r > 1 every r-tuple of Q-computable col-
orings g0, . . . , gr−1 : [N]n → 2, there are infinite ~g-homogeneous sets G0, . . . , Gr−1

such that ~G⊕Q does not compute any infinite f -homogeneous set.
Now, consider an r-tuple of P -computable colorings h0, . . . , hr−1 : [N]n+1 → 2.

By Jockusch [Joc72b, Lemma 5.4], Q computes infinite sets C0, . . . , Cr−1 ⊆ N pre-
homogeneous for h0, . . . , hr−1. For s < r, let gs : [N]n → 2 be the Q-computable
coloring defined by gs(i0, . . . , in−1) = hs(x

s
i0
, . . . , xsin−1

, y), where Cs = {xs0 < xs1 <

. . .} and y ∈ Cs is any element bigger than xsin−1
.

By choice of f , there are infinite ~g-homogeneous sets G0, . . . , Gr−1 such that
~G ⊕ Q does not compute any infinite f -homogeneous set. In particular, letting
Hs = {xsi : i ∈ Gs}, Hs is hs-homogeneous, and since ~H⊕P 6T

~G⊕Q, then ~H⊕P
does not compute any infinite f -homogeneous set. This completes our induction.

Finally, by Shoenfield’s limit lemma, for every n > 2, there exists a stable
computable coloring f̂ : [N]n → 3 such that any infinite f̂ -homogeneous set is
f -homogeneous, where f : N → 3 is the function witnessed by the inductive
proof.

132

CHAPTER 4

THIN SET THEOREM AND
OMNISCIENT REDUCTION

In this short chapter, we prove a separation result on the thin set theorem (a
variation of Ramsey’s theorem) and its stable counterpart. The proof uses forcing
and is similar to the one established in [DPSW16].

The statements we are interested in are similar to RTn
k , but the condition on

the solution set is relaxed. Instead of homogeneity, it is only required that fewer
than a fixed number of colors be used.

Statement 4.0.1 (Thin set theorem RTn
k,q). For any any coloring f : [N]n →

k, there is an infinite set H ⊆ N such that card
(
f
(
[H]n

))
6 q.

In particular RTn
k,k is trivial, and RTn

k,1 is exactly RTn
k . The statement ∀k,RTn

k,q

is denoted by RTn
<∞,q. Moreover, if we consider only stable colorings, we denote

the statement by SRTn
k,q. We can now state the theorem we wish to prove.

Theorem 4.0.2. For all q > 2, we have RT1
q+1,q 66soc SRT

2
<∞,q+1

Remark 4.0.3. To simplify notations in the proof, a binary string σ will often
be identified with the set it represents, i.e. {x < |σ| : σ(x) = 1}.

Proof. We want to prove

∃f : N → q + 1,∀g : [N]2 → ` stable,∃H solution of g, ∀S solution of f,H 6>T S

Let f : N → q + 1 be an M-generic coloring for Cohen forcing, where M is a
countable transitive model of Z2, and let g : [N]2 → ` be a stable coloring. We

133

Chapter 4 Thin set theorem and omniscient reduction

are going to construct H by forcing, but first we use the following lemma to define
two sets B ∈ M and J ⊆ ` that come into play in the forcing conditions we are
going to use. The idea behind this lemma is to carefully tailor B and J , so that
we always find suitable forcing extensions later. Its usage will become clearer once
we reach cases 2 and 3 of the construction.

Lemma 4.0.4 (target colors). There is an infinite set B ∈ M, and a set
J := {j0, . . . , jq} ⊆ ` such that, for any i 6 q, for any infinite C ⊆ B in M
and for any injection h : C → N in M, we have

∃∞x ∈ C, f(h(x)) = i ∧ lim
y
g(x, y) = ji

Proof. Construction. For every i 6 q, every F ⊆ ` and every infinite set A,
consider the class DA

i,F whose elements are infinite sets B ⊆ A in M such that,
for all infinite subset C ⊆ B in M and for all h : C → N in M, we have
∃∞x ∈ C, f(h(x)) = i ∧ limy g(x, y) /∈ F .

Note that DA
i,∅ 6= ∅ for any i 6 q and any infinite set A. Otherwise, for all

infinite B ⊆ A in M, there is C ⊆ B in M and h : C → N in M such that
∀∞x ∈ C, (f(h(x)) = i =⇒ limy g(x, y) ∈ ∅). And since f is M-generic, there
are infinitely many x ∈ C such that f(h(x)) = i, leading to a contradiction.
Moreover note that DA

i,` = ∅ for any i 6 q and any infinite set A. Otherwise, there
would be elements whose limit color for g is not in `, a contradiction.

We now construct B by induction. First define B0 := N and F0 := ∅. Suppose
Bi and Fi have been constructed for some i 6 q. Let Fi+1 ⊆ ` be maximal for
the inclusion such that DBi

i,Fi+1
6= ∅. Then Bi+1 is chosen as an element of this

class. Afterwards, define B := Bq+1 and J := {ji : i 6 q} where ji is some color in
`− Fi+1 (which is not empty since DBi

i,` = ∅).
Verification. By contradiction suppose there is i 6 q, C ⊆ B in M and

h : C → N in M, such that ∀∞x ∈ C,
(
f(h(x)) = i =⇒ limy g(x, y) 6= ji

)
. Then

Fi+1 was not maximal for the inclusion during the construction, because C ∈ DBi
i,G

where G := Fi+1 ∪ {ji}.

We can now define our forcing conditions to be Mathias conditions (σ,X) such
that

• g
(
[σ]2

)
⊆ J

• ∀x ∈ σ,∀y ∈ X, g(x, y) ∈ J

• X ⊆ B ∈ M

134

For any c.e. functional W and any color i 6 q, we define the requirement

RW,i :=WH is not an infinite set
or there is w ∈ WH such that f(w) = i

We are going to construct a sequence of conditions, starting with (ε,N) and such
that, for any functional W and any color i 6 q, there is a condition forcing RW,i.
In other words, if WH is an infinite set, then it uses more than q colors for f .

The search for extensions will be guided by trees. For each n we define the tree
Tn ⊆ X<N, such that ε ∈ Tn, and α ∈ Tn iff α ∈ X<N is strictly increasing and

∀ρ ⊆ ran
(
α#

)
,W σ∪ρ ⊆ J0, nJ

Where the operator ·# takes a finite sequence and returns it without its last
element. Note that ∀n < m, Tn ⊆ Tm, by definition. We now present a few
lemmas on these trees to better understand them.

Lemma 4.0.5 (non-terminal node). Let α be a node of Tn. If it is not
terminal, then it has infinitely many successors.

Proof. Let α be a non-terminal node of Tn. By definition, there exists some x ∈ X

such that α · x is strictly increasing and ∀ρ ⊆ ran
(
(α · x)#

)
,W σ∪ρ ⊆ J0, nJ. But

(α · x)# = α, so the above formula does not depend on x. Hence, for any y ∈ X

such that α · y is strictly increasing, y is a successor of α. And since X is infinite,
there are infinitely many such elements.

Lemma 4.0.6 (terminal node). Let α be a node of the tree Tn. If it is terminal,
then there exists ρ ⊆ ranα and w > n such that w ∈ W σ∪ρ.

Proof. If α has no successor, then for any x ∈ X such that α·x is strictly increasing,
we have ∃ρ ⊆ ran

(
(α·x)#

)
,W σ∪ρ 6⊆ J0, nJ, i.e. ∃ρ ⊆ ranα, ∃w > n,w ∈ W σ∪ρ.

To refer to this lemma we may say “the ρ and w associated to the (terminal)
node α”. We now prove the main claim of the theorem.

Claim 4.0.7. For any condition (σ,X), any functional W and any color i 6 q,
there is an extension of (σ,X) which forces RW,i.

135

Chapter 4 Thin set theorem and omniscient reduction

Proof. To extend (σ,X) we distinguish several cases.

Case 1. If there is n such that Tn is not well-founded, then we can force WH

to be finite. Indeed, let P be an infinite path of this tree, and let Y be its range.
We have that Y ⊆ X and that ∀ρ ⊆ Y,W σ∪ρ ⊆ J0, nJ. Thus by defining the new
extension (σ, Y), we have the desired result.

We now assume all the trees Tn are well-founded, and we are going to force
the “or” case of the requirement. More precisely, given (σ,X) and i 6 q, we try
to find a terminal node γ in some Tn, whose w associated by the terminal node
lemma is such that f(w) = i. By the lemma there is also ρ ⊆ ran γ such that
w ∈ W σ∪ρ. So we can extend (σ,X) into

(
σ ∪ ρ,X ∩ Jm,∞J

)
, where m is such

that ∀x ∈ σ ∪ ρ, ∀y ∈ X, (y > m =⇒ g(x, y) ∈ J). To help us find the desired
terminal node we label the trees:

Definition 4.0.8 (labelling). The nodes of each well-founded Tn are labelled
recursively, by an integer or the symbol ∞, we begin with terminal nodes:

• If the node α is terminal, then we know there exist w and ρ ⊆ ranα

such that w ∈ W σ∪ρ, we thus label α with the smallest w of this kind.
• If α is non-terminal and if all its successors have a label, then two pos-

sibilities arise. Either one of the labels appears infinitely many times
amongst the successors, we thereby find the smallest such label w, and
we assign it to α. Or there is no such label, and we thereby assign the
label ∞ to α.

Informally, if α has a finite label w, then it can be extended to a terminal node
whose associated value is w. The label is ∞ if there are infinitely many different
labels α could lead to. Before proceeding we prune all the trees Tn, so they are
easier to manipulate. This procedure does not change the label associated to a
node.

136

Definition 4.0.9. To each Tn we associate TL
n , defined recursively from its

root.
• The root of TL

n is ε.
• If α is in TL

n and is labeled w, then all its successors with the same label
are also in TL

n .
• If α is in TL

n and has label ∞, and if it has infinitely many successors
with the same label, then all these successors are in TL

n .
• If α has label ∞ but only finitely many successors with this label, then

there are infinitely many different labels w0 6 w1 6 . . . amongst its
successors. (because the label of α is ∞, so it is non-terminal and it
cannot have infinitely many successors with a finite label w). For each
i ∈ N, α ·xi is in TL

n , where xi is the smallest integer such that α ·xi has
label wi.

The structure of TL
n is basically the same as Tn. The terminal nodes are the

same, and a non-terminal node in TL
n still has infinitely many successors. But now

we also have the following lemma.

Lemma 4.0.10 (labelling). For any n, let α ∈ TL
n with a finite label w. In

the sub-tree whose root is α, all the nodes have the label w.

Case 2. We suppose here that every tree TL
n has a finite label, noted wn, at its

root. The set V := {wn : n ∈ N} is an infinite set of M, because wn > n by the
terminal node lemma. By genericity of f , and since V is an infinite set of M, we
have that, for any color i 6 q, there are infinitely many elements of V which are
colored i by f . So we can find n such that f(wn) = i. Recall that all the nodes in
TL
n have label wn.
We look for a terminal node γ ∈ TL

n and some m such that
(
γ,X ∩ Jm,∞J

)
is a valid condition, then, by the terminal node lemma, there is ρ ⊆ ran γ such
that wn ∈ W σ∪ρ and we have that

(
σ ∪ ρ,X ∩ Jm,∞J

)
is a valid condition that

forces RW,i since f(wn) = i. So we construct a sequence γ0 ≺ γ1 ≺ . . . of nodes of
TL
n such that, for all s,

(
γs, X ∩ Jms,∞J

)
is a condition and some ms ∈ N. Since

the tree is well-founded, this sequence must be finite, and γ will be chosen as its
greatest element.

We construct the sequence by induction, starting with γ0 := ε. Suppose that γs
is constructed. If it is terminal, we are done. Otherwise consider the row under
γs, noted A := {x ∈ X : γs · x ∈ TL

n } ∈ M. Note that A ⊆ B since X ⊆ B.

137

Chapter 4 Thin set theorem and omniscient reduction

〈ε, wn〉
γ0

γ1

γ2

γs−1

γs

Figure 4.1: A representation of the construction of γs.

According to the target colors lemma (with the identity function as h), there is
some x ∈ A ∩ Jms,∞J such that limy g(x, y) ∈ J . Moreover, since γs · x ∈ TL

n , its
label is wn and verifies f(wn) = i. In which case define γs+1 := γs ·x, and let ms+1

be the smallest integer verifying ∀z ∈ γs+1,∀y ∈ X, (y > ms+1 =⇒ g(z, y) ∈ J).

Case 3. Finally, we suppose there is some n such that the root of TL
n is labelled

∞. We begin the same construction as in Case 2 to find γ, but we stop when a
node γs has label ∞ while all its successors have a finite label. This is bound to
happen, since the root of the tree has label ∞ and terminal nodes do not. We then
consider the row under γs, noted A := {x ∈ X : γs · x ∈ TL

n } ∈ M, and h ∈ M
the function which, to an element x ∈ A, associates the label of γs · x. It is an
injection due to the pruning we made on trees. Note that A ⊆ B since X ⊆ B.
By the target colors lemma, there is some x ∈ A∩ Jms,∞J such that f(h(x)) = i

and limy g(x, y) ∈ J . In which case we define γs+1 := γs · x and then continue the
construction, just like in the previous case, to obtain the terminal node γ whose
label w := h(x) verifies f(w) = i, and such that (γ,X ∩ Jm,∞J) for some m ∈ N.

Thus, we use the terminal node lemma to find ρ ⊆ ran γ such that w ∈ W σ∪ρ,
and so the extension

(
σ ∪ ρ,X ∩ Jm,∞J

)
forces RW,i.

138

BIBLIOGRAPHY

[ABD+] Eric P. Astor, Laurent Bienvenu, Damir Dzhafarov, Ludovic Patey,
Paul Shafer, Reed Solomon, and Linda B. Westrick. The weakness of
typicality. In preparation.

[AdCD+24] Paul-Elliot Anglès d’Auriac, Peter Cholak, Damir Dzhafarov, Benoît
Monin, and Ludovic Patey. Milliken’s Tree Theorem and Its Ap-
plications: A Computability-Theoretic Perspective. Mem. Amer.
Math. Soc., 293(1457), 2024.

[Bél22] David R. Bélanger. Conservation theorems for the cohesiveness prin-
ciple. Submitted., 2022.

[BKHL+14] Stephen Binns, Bjørn Kjos-Hanssen, Manuel Lerman, James H.
Schmerl, and Reed Solomon. Self-embeddings of computable trees.
Notre Dame Journal of Formal Logic, 2014.

[BPS17] Laurent Bienvenu, Ludovic Patey, and Paul Shafer. On the logi-
cal strengths of partial solutions to mathematical problems. Trans.
London Math. Soc., 4(1):30–71, 2017.

[BR17] Vasco Brattka and Tahina Rakotoniaina. On the uniform com-
putational content of Ramsey’s theorem. J. Symb. Log.,
82(4):1278–1316, 2017.

[BW17] Andrey Bovykin and Andreas Weiermann. The strength of infinitary
Ramseyan principles can be accessed by their densities. Ann. Pure
Appl. Logic, 168(9):1700–1709, 2017.

[CDHP20] Peter A. Cholak, Damir D. Dzhafarov, Denis R. Hirschfeldt, and
Ludovic Patey. Some results concerning the SRT2

2 vs. COH problem.
Computability, 9(3-4):193–217, 2020.

139

Bibliography

[CGP23] Julien Cervelle, William Gaudelier, and Ludovic Patey. The reverse
mathematics of cac for trees. The Journal of Symbolic Logic,
page 1–23, 2023.

[CHM09] Jennifer Chubb, Jeffry L. Hirst, and Timothy H. McNicholl. Reverse
mathematics, computability, and partitions of trees. Journal of
Symbolic Logic, 74(01):201–215, 2009.

[CJS01] Peter A. Cholak, Carl G. Jockusch, and Theodore A. Slaman. On
the strength of Ramsey’s theorem for pairs. Journal of Symbolic
Logic, 66(01):1–55, 2001.

[CLY10] C. Chong, Steffen Lempp, and Yue Yang. On the role of the col-
lection principle for Σ0

2-formulas in second-order reverse mathemat-
ics. Proceedings of the American Mathematical Society,
138(3):1093–1100, 2010.

[Con] Chris J. Conidis. Computability and combinatorial aspects of mini-
mal prime ideals in noetherian rings. Submitted.

[CSY14] Chitat Chong, Theodore Slaman, and Yue Yang. The metamathemat-
ics of stable Ramsey’s theorem for pairs. Journal of the American
Mathematical Society, 27(3):863–892, 2014.

[DDH+16] François G. Dorais, Damir D. Dzhafarov, Jeffry L. Hirst, Joseph R.
Mileti, and Paul Shafer. On uniform relationships between combi-
natorial problems. Trans. Amer. Math. Soc., 368(2):1321–1359,
2016.

[DGH+20] Damir D. Dzhafarov, Jun Le Goh, Denis R. Hirschfeldt, Ludovic
Patey, and Arno Pauly. Ramsey’s theorem and products in the
Weihrauch degrees. Computability, 9(2):85–110, 2020.

[DGHT+22] Rod Downey, Noam Greenberg, Matthew Harrison-Trainor, Ludovic
Patey, and Dan Turetsky. Relationships between computability-
theoretic properties of problems. J. Symb. Log., 87(1):47–71, 2022.

[DH10] Rodney G. Downey and Denis R. Hirschfeldt. Algorithmic ran-
domness and complexity. Springer, 2010.

140

Bibliography

[DHLS01] Rod Downey, Denis Hirschfeldt, Steffen Lempp, and Reed Solomon.
A δ02 set with no infinite low subset in either it or its complement.
Journal of Symbolic Logic, 66, 09 2001.

[DHR20] Damir D. Dzhafarov, Denis R. Hirschfeldt, and Sarah C. Reitzes.
Reduction games, provability, and compactness, 2020.

[DJ09] Damir D. Dzhafarov and Carl G. Jockusch, Jr. Ramsey’s theorem
and cone avoidance. J. Symbolic Logic, 74(2):557–578, 2009.

[DM22] Damir D. Dzhafarov and Carl Mummert. Reverse mathematics—
problems, reductions, and proofs. Theory and Applications of
Computability. Springer, Cham, [2022] ©2022.

[Dor12] François G. Dorais. On a theorem of hajnal and surányi. Unpub-
lished., 2012.

[DPSW16] Damir D. Dzhafarov, Ludovic Patey, D. Reed Solomon, and
Linda Brown Westrick. Ramsey’s theorem for singletons and strong
computable reducibility. Submitted., 2016.

[Dzh12] Damir D. Dzhafarov. Cohesive avoidance and arithmetical sets.
arXiv preprint arXiv:1212.0828, 2012.

[Dzh14] Damir D. Dzhafarov. Cohesive avoidance and strong reduc-
tions. Proceedings of the American Mathematical Society,
143(2):869–876, 2014.

[Dzh16] Damir D. Dzhafarov. Strong reductions between combinatorial prin-
ciples. J. Symb. Log., 81(4):1405–1431, 2016.

[Flo12] Stephen Flood. Reverse mathematics and a Ramsey-type König’s
lemma. Journal of Symbolic Logic, 77(4):1272–1280, 2012.

[Fri74] Harvey M. Friedman. Some systems of second order arithmetic and
their use. In Proceedings of the International Congress of
Mathematicians, Vancouver, volume 1, pages 235–242. Canadian
Mathematical Society, Montreal, Quebec, 1974.

[FT16] Stephen Flood and Henry Towsner. Separating principles below
WKL0. MLQ Math. Log. Q., 62(6):507–529, 2016.

141

Bibliography

[HB11] David Hilbert and Paul Bernays. Grundlagen der Mathematik.
I/Foundations of mathematics. I. Part A. Prefaces and
§§1–2. College Publications, London, 2011. Edited and with a
preface by Dov Gabbay, Michael Gabbay, Jörg Siekmann and Claus-
Peter Wirth, Commented translation by Claus-Peter Wirth of the
second German edition of 1968, including the annotation and trans-
lation of all deleted parts of the first German edition of 1934, With a
chapter “Hilbert’s proof theory” by Wilfried Sieg [MR2668182], Dual
German-English text.

[Her01] E. Herrmann. Infinite chains and antichains in computable partial
orderings. J. Symbolic Logic, 66(2):923–934, 2001.

[Hir87] Jeffry L. Hirst. Combinatorics in subsystems of second or-
der arithmetic. PhD thesis, Pennsylvania State University, August
1987.

[Hir15] Denis R. Hirschfeldt. Slicing the truth, volume 28 of Lecture
Notes Series. Institute for Mathematical Sciences. National
University of Singapore. World Scientific Publishing Co. Pte. Ltd.,
Hackensack, NJ, 2015. On the computable and reverse mathematics
of combinatorial principles, Edited and with a foreword by Chitat
Chong, Qi Feng, Theodore A. Slaman, W. Hugh Woodin and Yue
Yang.

[HJ16] Denis R. Hirschfeldt and Carl G. Jockusch. On notions of
computability-theoretic reduction between Π1

2 principles. J. Math.
Log., 16(1):1650002, 59, 2016.

[HJKH+08] Denis R. Hirschfeldt, Carl G. Jockusch, Bjørn Kjos-Hanssen, Steffen
Lempp, and Theodore A. Slaman. The strength of some combina-
torial principles related to Ramsey’s theorem for pairs. Computa-
tional Prospects of Infinity, Part II: Presented Talks, World
Scientific Press, Singapore, pages 143–161, 2008.

[HS07] Denis R. Hirschfeldt and Richard A. Shore. Combinatorial principles
weaker than Ramsey’s theorem for pairs. Journal of Symbolic
Logic, 72(1):171–206, 2007.

142

Bibliography

[HSS09] Denis R. Hirschfeldt, Richard A. Shore, and Theodore A. Slaman.
The atomic model theorem and type omitting. Transactions of
the American Mathematical Society, 361(11):5805–5837, 2009.

[Joc72a] Carl G. Jockusch. Degrees in which the recursive sets are uniformly
recursive. Canad. J. Math., 24:1092–1099, 1972.

[Joc72b] Carl G. Jockusch, Jr. Ramsey’s theorem and recursion theory. J.
Symbolic Logic, 37:268–280, 1972.

[JS72a] Carl G. Jockusch and Robert Irving Soare. π0
1 classes and degrees of

theories. Transactions of the American Mathematical Society,
173:33–56, 1972.

[JS72b] Carl G. Jockusch, Jr. and Robert I. Soare. Π0
1 classes and degrees of

theories. Trans. Amer. Math. Soc., 173:33–56, 1972.

[Lem] Steffen Lempp. Priority arguments in computability theory, model
theory, and complexity theory. Lecture notes.

[Liu12] Jiayi Liu. Rt22 does not imply wkl0. The Journal of Symbolic
Logic, 77(2):609–620, 2012.

[Liu23] Lu Liu. The coding power of a product of partitions. Israel J.
Math., 255(2):645–683, 2023.

[LST13] Manuel Lerman, Reed Solomon, and Henry Towsner. Separating prin-
ciples below Ramsey’s theorem for pairs. Journal of Mathematical
Logic, 13(02):1350007, 2013.

[Luc21] Salvador Lucas. The origins of the halting problem. Journal of
Logical and Algebraic Methods in Programming, 121:100687,
2021.

[Mat77] A. R. D. Mathias. Happy families. Ann. Math. Logic, 12(1):59–111,
1977.

[Mil04] Joseph Roy Mileti. Partition theorems and computability the-
ory. PhD thesis, University of Illinois at Urbana-Champaign, 2004.
Thesis (Ph.D.)–University of Illinois at Urbana-Champaign.

[MM68] Webb Miller and Donald A. Martin. The degrees of hyperimmune
sets. Mathematical Logic Quarterly, 14(7-12):159–166, 1968.

143

Bibliography

[Mon11] Antonio Montalbán. Open questions in reverse mathematics. Bul-
letin of Symbolic Logic, 17(03):431–454, 2011.

[MP21] Benoit Monin and Ludovic Patey. SRT2
2 does not imply RT2

2 in ω-
models. Adv. Math., 389:Paper No. 107903, 32, 2021.

[MP22] B. Monin and L. Patey. Calculabilité: aléatoire, mathématiques
à rebours et hypercalculabilité. Tableau noir. Calvage & Mounet,
2022.

[Pat15] Ludovic Patey. Iterative forcing and hyperimmunity in reverse math-
ematics. In Arnold Beckmann, Victor Mitrana, and Mariya Soskova,
editors, CiE. Evolving Computability, volume 9136 of Lecture
Notes in Computer Science, pages 291–301. Springer Interna-
tional Publishing, 2015.

[Pat16a] Ludovic Patey. Open questions about Ramsey-type statements in
reverse mathematics. Bull. Symb. Log., 22(2):151–169, 2016.

[Pat16b] Ludovic Patey. The strength of the tree theorem for pairs in reverse
mathematics. J. Symb. Log., 81(4):1481–1499, 2016.

[Pat16c] Ludovic Patey. The weakness of being cohesive, thin or free in reverse
mathematics. Israel J. Math., 216(2):905–955, 2016.

[Pat17] Ludovic Patey. Iterative forcing and hyperimmunity in reverse math-
ematics. Computability, 6(3):209–221, 2017.

[Pat18] Ludovic Patey. Partial orders and immunity in reverse mathematics.
Computability, 7(4):323–339, 2018.

[Pat19] Ludovic Patey. Ramsey-like theorems and moduli of computation,
2019.

[PK78] J. B. Paris and L. A. S. Kirby. Σn-collection schemas in arithmetic.
In Logic Colloquium ’77 (Proc. Conf., Wrocław, 1977), vol-
ume 96 of Studies in Logic and the Foundations of Mathemat-
ics, pages 199–209. North-Holland, Amsterdam-New York, 1978.

[Ram30] Frank P. Ramsey. On a Problem of Formal Logic. Proceedings of
the London Mathematical Society, s2-30(1):264–286, 01 1930.

144

Bibliography

[Sco62] Dana Scott. Algebras of sets binumerable in complete extensions
of arithmetic. In Proc. Sympos. Pure Math, volume 5, pages
117–121, 1962.

[Sim09] Stephen G. Simpson. Subsystems of Second Order Arithmetic.
Cambridge University Press, 2009.

[Sla11] Theodore Slaman. The first-order fragments of second-order theories.
Beamer presentation, 2011.

[Soa16] Robert I. Soare. Turing computability. Theory and Applications
of Computability. Springer-Verlag, Berlin, 2016. Theory and appli-
cations.

[Spe71] Ernst Specker. Ramsey’s theorem does not hold in recursive set the-
ory. Studies in logic and the foundations of mathematics,
61:439–442, 1971.

[SS95] David Seetapun and Theodore A. Slaman. On the strength of
Ramsey’s theorem. Notre Dame Journal of Formal Logic,
36(4):570–582, 1995.

[Tow15] Henry Towsner. On maximum conservative extensions. Com-
putability, 4(1):57–68, 2015.

[Tur36] Alan Mathison Turing. On computable numbers, with an application
to the entscheidungsproblem. J. of Math, 58(345-363):5, 1936.

[Usp63] Vladimir Andreyevich Uspensky. Some remarks on recursively enu-
merable sets. American Mathematical Society Translations:
Series 2, volume 23, Nine Papers on Logic and Quantum Electrody-
namics:89–101, 1963.

[Wan16] Wei Wang. The definability strength of combinatorial principles. J.
Symb. Log., 81(4):1531–1554, 2016.

145

INDEX

Symbole

ACA0 . 46
CAC . 65
CAC for (binary) trees 66
CC . 105
COH . 57
DNC2 . 37
D2

2 . 87
∆0

2 basis theorem 35
EM . 59
Γ-approximation 126
Γ-hyperimmunity 127
PA degree . 37
Π0

1-class . 33
RCA0 . 44
RTn

k . 51
SAC . 72
SHER . 85
SRTn

k . 58
Σ0

1-class . 33
TAC . 68
WKL . 45
WKL0 . 45
ω-model . 43
c.e.

approximation: 30
array: 31
set: 24

2-RAN . 75

A

approximation 29
arithmetic hierarchy 27

B

basis . 35
Big Five . 45
binary

tree: 34
bounding principle 55

C

Cantor space 32
chain antichain theorem 65
Church-Turing thesis 21
Cohen forcing 38
cohesive set . 57
coloring . 51
complementation theorem 24
complete theory 36

147

INDEX

completely branching
set: 72
tree: 68

computable
function: 22
reducibility: 48
sequence: 29
set: 22
tree: 34

computably dominated basis
theorem 35

computably enumerable set 24
computation path 124
condition . 38
cone . 36
cone avoidance basis theorem . . . 36
consistent theory 36
cross-constraint

cone avoidance basis theorem: 117
ideal: 105
principle: 105

cross-tree . 102
cylinder . 21

D

dense class . 39
diagonally non-computable 37

E

Erdős-Moser theorem 59

F

filter . 38
fixed-point theorem 77
forcing relation 40
full model . 43

G

generic filter . 39

H

halting set . 23
height of a cross-tree 102
Henkin model 42
homogeneity . 51
homogeneous set 51
hyperimmune

coloring: 105
degree: 31
function: 30, 31

hyperimmune-free basis theorem 35

I

instance . 47
iterated Turing jumps 26

J

join . 25
jump ideal . 46

K

Kleene fixed-point theorem 77
Kreisel basis theorem 35

L

left-full class 103
limit computable 30
low basis theorem 35
low sets . 27

M

Mathias condition 41

148

INDEX

Mathias forcing 41

N

non-standard
integer: 43
model: 43

notion of forcing 38

O

omniscient computable reducibility .
48

one-step variation 123
oracle . 24

P

parallelization of a problem 95
path . 34
Post’s theorem 28
pre-homogeneous set 99
prefix relation 21
preservation . 49
principal function 31
problem . 47

R

Ramsey’s theorem 51
Ramsey-like theorem 66
relativization 25
requirement . 38
right-pruned 102
Robinson’s arithmetic axioms . . . 42

S

Scott ideal . 46
Seetapun’s theorem 56

semi-ancestry 87
semi-hereditary coloring 84
set antichain theorem 72
Shoenfield’s limit lemma 30
solution . 47
split node . 68
stable

coloring: 58
order: 90
tree: 90

Stable Ramsey’s theorem 58
star of a problem 95
string . 20
strong

computable reducibility: 48
Weihrauch reducibility: 48

sufficient set 115
sufficiently generic 40

T

theory . 36
thin set theorem 133
total functional 25
transitive

coloring: 59
set: 59

tree . 34
tree antichain theorem 68
Turing

degree: 26
equivalence: 26
functional: 24
ideal: 44
jump: 26
reducibility: 25

U

149

INDEX

use principle . 25

W

weak König’s lemma 45
weakly-homogeneous set 85

weakness property 49
Weihrauch reducibility 48
well-founded

relation: 19
tree: 34

150

	Résumé / Abstract
	Remerciements
	Résumé détaillé de la thèse
	Short thesis summary
	Main contributions
	Introduction
	Notation
	Set theoretic notation
	Strings and sequences

	Computability theory
	History
	Basic notions
	Computably enumerable sets and the halting problem
	Oracles
	Turing reduction and Turing jump
	The arithmetic hierarchy and Post's theorem
	Approximations and Shoenfield's lemma
	Hyperimmunity
	Trees and Pi01-classes
	Basis theorems
	PA degrees
	Forcing

	Reverse mathematics
	Overview
	Second-order arithmetic
	Models
	RCA0
	The Big Five
	Problems and reducibilities
	Separation and preservation
	Ramsey's theorem

	CAC for trees
	Introduction
	A chain-antichain theorem for trees
	Ramsey-like statements
	Forbidden patterns on 3 variables

	CAC for trees and its equivalences
	Probabilistic proofs of SAC
	Relation between CAC for trees and ADS+EM
	TAC, lowness and hyperimmunity
	Equivalence between CAC for trees and SHER
	Stable counterparts: SADS and CAC for stable c.e. trees
	Conclusion
	Open questions

	Cross-constraint basis theorems and products of partitions
	Introduction
	Products of problems
	Notation

	Core ideas
	Separating theorems
	Cross-constraint techniques

	General framework
	Cross-trees
	Left-fullness
	Parameterized theorems

	Cross-constraint basis theorems
	Conditions
	Cross-constraint Delta02 basis theorem
	Combinatorial lemmas
	Cross-constraint cone avoidance basis theorem
	Cross-constraint preservation of non-Sigma01 definitions
	Cross-constraint low basis theorem

	Products of instances for Ramsey's theorem
	Gamma-hyperimmunity and separation
	Preservation of Gamma-hyperimmunity for COH
	Separation results

	Thin set theorem and omniscient reduction
	Bibliography
	Index

